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This thesis examines the nonlinear optical properties of 14:14 GaAs/AlAs 

superlattice-core waveguides at wavelengths in the 1550 nm telecommunications range. 

The linear optical properties of as-grown superlattice show polarization dependencies that 

are attributed to the difference in the half-bandgap for TE and TM polarizations and the 

structural anisotropy of the superlattice. Two-photon absorption measurements in as-

grown superlattice yielded polarization-dependent coefficients between 1.5 cm/W to 4.0 

cm/W, which are larger than in bulk AlGaAs. Spectral broadening induced by self-phase 

modulation was observed to give nonlinear refraction coefficients n2 of 1.5 cm2/W to 5.5 

cm2/W with TE modes having values as much as twice as large as the TM mode. The 

ratio of self- to cross-phase modulation between polarizations showed a polarization 

dependence. Intermixing superlattice resulted in a reduction in n2 by one order of 

magnitude. Figure of merit values show superlattice is a viable material for nonlinear 

optical devices. 
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Chapter 1  

Introduction 
 

 

 

1.1 Introduction to Thesis and Motivation 

Optical telecommunications and data networks continue to improve in 

performance as new technologies have allowed increased data rates. Future projected 

demands for high-bandwidth services in data networks will require further improvements 

in optical technology. However, current optical networks are limited in performance by 

their dependency on microelectronics. While microelectronics have continued to improve 

in performance beyond expectations, further scaling of transistors will be limited by the 

achievable resolution with available fabrication technologies, gate dielectric thickness 

and materials, and current leakage in deep-submicron device lengths. Thus, the 

theoretical physical limitations of microelectronics will forbid further improvements in 

transmission and processing speed. The optics industry has responded as the 

microelectronics industry has with added parallelism in the form of wavelength division 

multiplexing (WDM) for increasing the aggregate transmission speed. However, many 

other functions are still performed by microelectronics and require optical-electrical-

optical (OEO) conversions. Thus, it is necessary to develop new technologies based 

entirely on optics to realize the full potential of optical networks. 

Nonlinear optics provides a solution by enabling all-optical components. These 

devices would provide basic functions such as all-optical signal routing and direct 

frequency conversions without reliance on electronic components. More advanced 

operations such as all-optical logic are also possible. Several such devices based on 
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nonlinear optical effects have been developed such as nonlinear-optical loop mirrors 

(NOLM) [1] and terahertz optical asymmetric demultiplexers (TOAD) [2] . However, 

many of these devices are large, expensive, and impractical. It would be beneficial to 

create compact, low cost devices that can be placed onto the same chip to make photonic 

integrated circuits (PICs). As shown in Figure 1.1, such chips would have a mix of linear, 

nonlinear, and active devices. The limitation in achieving this goal has so far been the 

materials available for nonlinear optics. Most exhibit weak nonlinear effects that require 

them to be large and unsuitable for integration. For materials that do have large 

nonlinearities, mixing linear and nonlinear components onto the same chip is problematic 

and costly. Also, many of these materials cannot be used to create lasers and 

photodetectors. 

In this thesis, an engineered semiconductor called GaAs/AlAs superlattice is 

evaluated as a material for nonlinear optics. This material has the potential for enabling 

the creation of complex PICs by allowing the integration of active and passive 

components onto the same chip. In addition, quantum well intermixing enables 

patterneable changes in the electronic bandgap and nonlinear properties of the 

superlattice after wafer growth, which is not possible with bulk semiconductors. This 

allows the creation of unique optical devices based on the modulation of the nonlinear 

coefficients, and allows for integration of both linear and nonlinear components. As will 

 
Figure 1.1: Example of a photonic integrated circuit (PIC) with linear waveguides, a nonlinear 

directional coupler (NLDC), a nonlinear Mach-Zehnder interferometer (NLMZI), a nonlinear 

microring resonators (NMR), a quasi-phase matched grating (QPM), and a laser source 
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be shown, superlattice exhibits many unique features and has sufficiently strong 

nonlinear behaviour to realize compact structures for all-optical switching and signal 

processing. 

 

1.2 Nonlinear Optics 

Nonlinear optical effects in materials are the result of a nonlinear dependence of 

the polarization density on an applied electric field. In general, this is expressed as [3] 

 

 ...: )3()2()1( +++= EEEEEEP
rrr
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χχχ  (1.1) 

 

where E
v

 is the applied electric field intensity, and χ(N) is the N-th order electric 

susceptibility. In general, the electric field and polarization density are vectors and the 

susceptibilities are tensors of rank N+1. The linear response of the material is represented 

by the term containing the linear susceptibility χ(1). The subsequent terms represent the 

nonlinear response. In most materials, nonlinearities of fourth-order or greater are 

infinitesimal and are usually ignored. However, the terms involving χ(2) and χ(3) can be 

significant at sufficiently high field intensities achievable with high-power lasers. Thus, 

second-order and third-order nonlinearities lead to several measurable and useful effects. 

Second-order nonlinear effects are the result of asymmetry in the crystal structure 

of a material. For materials that lack inversion symmetry, the χ(2) tensor elements can be 

strong enough to cause interactions between both static and time varying fields. Three-

wave mixing is a second-order phenomenon in which two optical fields interact to 

produce a third optical field of a different frequency. This effect is commonly used in 

parametric wavelength conversion for research laser systems. With further research, 

three-wave mixing can potentially be used in compact all-optical wavelength conversion 

devices with wide-ranging applications in telecommunications and sensor systems. 

For all-optical switching, third-order nonlinear effects are of great interest. Most 

notably is the optical Kerr effect. In this nonlinear effect, an intense optical field causes 

an instantaneous change in the refractive index according to the equation 
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where n0 is the linear index of refraction, n2 is the Kerr coefficient (also known as the 

nonlinear index of refraction), and I is the intensity of the optical field. By changing the 

refractive index, the phase velocity of light changes and the optical field accumulates an 

extra phase shift. This effect is known as self-phase modulation (SPM) since light causes 

a phase change on itself. Changes in the refractive index and phase shifts can also be 

created by a second optical field which is either at a different wavelength or on a different 

polarization. This type of interaction is called cross-phase modulation (XPM). Such 

optically-induced phase shifts used in several types of interferometric and dual-mode 

structures for optical switching [4].  

The Kerr effect also allows for a phenomenon known as self-focusing. A beam of 

light with sufficient intensity can cause a localized increase in the refractive index 

directly along its path creating a small index contrast with the surrounding material. At a 

particular power level, the self-focusing effect exactly balances diffraction and the beam 

travels through the material intact without spreading out. This is known as a spatial 

soliton. Discrete spatial solitons in waveguide arrays have been demonstrated [5]. 

Preliminary evidence of soliton emission from an asymmetric waveguide structure has 

been measured [6]. Spatial solitons have a wide range of possible applications in all-

optical switching and beam steering [4]. 

Multi-photon absorption is an effect related to the odd-numbered nonlinearities. 

Two or more photons with a total energy equaling the energy gap between two electronic 

bands can excite an electron from the low energy band to the high energy band. If only 

the third- and fifth-order nonlinear absorption are accounted for, the total absorption 

coefficient can be expressed as  

 

  (1.3) 2
320 II αααα ++=

 

where α0 is the linear absorption coefficient, α2 is the third-order nonlinear absorption 

coefficient, and α3 is the fifth-order nonlinear absorption coefficient. Third-order 

nonlinear absorption is related to two-photon absorption (TPA), while fifth-order 
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nonlinear absorption is related to three-photon absorption (3PA). TPA is strongest at 

photon energies near to one-half of the bandgap energy. Likewise, 3PA is strongest at 

photon energies near to one-third of the bandgap energy. Nonlinear absorption is useful 

for creating certain types of devices such as photodetectors [7], optical limiters [8], and 

autocorrelators [9]. However, optical losses of any kind are detrimental to devices based 

on the optical Kerr effect since they limit the optical intensity [10]. Thus, an efficient 

switching device should minimize the amount of nonlinear absorption in order to 

maximize the amount of nonlinear index change and phase-shift. 

Nonlinear refraction and two-photon absorption are linked to each other by the 

Kramers-Krönig relations [11]. As a result, n2 changes rapidly at wavelengths near the 

peak in α2. Thus, it is advantageous to operate a device based on the Kerr effect at 

wavelengths near the α2 peak. Above the half-bandgap, TPA in semiconductors is usually 

large and continually increases with shorter wavelengths. Thus, device operation 

becomes impractical above the half-bandgap energy. Instead, nonlinear devices should be 

operated below the half-bandgap where TPA is minimal but close enough to the half-

bandgap to take advantage of the enhancement in n2. 

 

1.3 Nonlinear Optics in Semiconductors 

Semiconductors have several advantages over most dielectrics as nonlinear 

materials. First, the electronic bandgap in semiconductors is much smaller than in 

dielectrics. In most cases, materials with smaller bandgaps tend to have large optical 

nonlinearities [12]. Second, the nonlinear behaviour of a material is enhanced near the 

electronic resonances [13]. The resonances for common semiconductors fall within 

photon energies in the visible and near infrared spectral bands. Thus, semiconductors can 

be used to create compact devices with strong nonlinearities in the spectral ranges useful 

for telecommunications and spectroscopy.  For example, the Kerr effect in crystalline 

silicon is over 100-times stronger at wavelengths near 1550 nm than in silica. Silicon has 

been used in several demonstrations of stimulated Raman scattering for lasers [14, 15], 

electro-optic modulation [16, 17], and all-optical switching in microring resonators [18]. 

However, its optical bandgap of ~1100 nm (1.12 eV) leads to a large amount of nonlinear 
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absorption for wavelengths near 1550 nm which are typically used in telecommunications 

systems. Moreover, carrier-induced plasma dispersion effects [19] used to achieve large 

nonlinear refractive index changes required for all-optical switching and electro-optic 

modulation operate slowly compared with the instantaneous Kerr effect. Lastly, silicon 

has an indirect bandgap which makes it impractical for creating optical sources. 

The GaAs/AlxGa1-xAs material system has many advantages over other 

semiconductors. Like several other III-V compound semiconductors, GaAs has a direct 

bandgap which makes it suitable for creating optical sources. However, unlike other III-V 

materials such as InP/InGaAsP, all compositions of AlxGa1-xAs from GaAs to AlAs are 

lattice matched. Thus, it is possible to grow thick layers of perfectly crystalline AlGaAs 

of one composition on top of another with a different composition without the formation 

of defects or undesired structures. Creating slab waveguide structures requires mixing 

layers of different compositions, and thus AlGaAs is a natural platform for make such 

waveguides. GaAs/AlGaAs also benefits from having mature fabrication processes. 

As a nonlinear optical material, AlGaAs is a good candidate for creating practical 

devices. Previous studies have shown that bulk AlGaAs exhibits a Kerr effect that is over 

500-times stronger than in silica [20]. The bandgap of AlxGa1-xAs varies between 1.43 eV 

(870 nm) and 2.17 eV (570 nm). Thus, the half-bandgap can be placed near the 1310 nm 

and 1550 nm spectral windows, bringing large third-order nonlinear effects which lie 

near the resonance point. In the most recent studies of AlGaAs, focus has been placed 

specifically on Al0.18Ga0.82As since its bandgap is ~1.645 eV which places its half-

bandgap near 1500 nm. This AlGaAs composition has been used in a variety of devices 

including discrete soliton waveguide arrays [5], nonlinear directional couplers [21], and 

nonlinear Bragg gratings [22]. 

 

1.4 Superlattice and Quantum Well Intermixing 

Quantum-confined structures in semiconductors offer several advantages over 

devices made of bulk material. First, the density of carrier states is reduced yielding 

narrow spectral features. This is beneficial for creating lasers with narrow linewidths, 

which is necessary in DWDM systems. Second, the energy of confined states are 
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sensitive to both the material composition and the dimensions of the well and barrier 

regions. Thus, the wavelength of the emission/absorption peaks can be tailored to suite 

the required application. Several well and barrier regions can be integrated into the same 

structure to create a multiple-quantum well structure (MQW). Lasers benefit from MQWs 

since the cross-section of the active layer increases yielding more gain. In the case of 

passive waveguides, the increased cross-section exposes more of the guided optical 

energy to the quantum wells and its specific optical properties. MQWs also introduce 

spatial asymmetry to the waveguide structure, and as a result, the optical properties can 

become highly polarization dependent. 

Semiconductor superlattices are extensions of MQW structures. As shown in 

Figure 1.2, superlattice is made up of a periodic stack of alternating material layers one of 

which is the barrier material and the other which is the well material. However, unlike 

MQWs, the barrier layers are narrow enough that carriers can quantum mechanically 

tunnel from one well to another. As a result, the normally discrete energy states of the 

quantum wells broaden out to form minibands that span across the entire superlattice 

[23]. The resulting band structure of the superlattice as a whole, depicted in Figure 1.3, is 

similar to bulk semiconductors. However, there is less band overlap, which results in the 

formation of energy gaps between the minibands. The energy gaps between the 

minibands can be controlled by changing the well and barrier thicknesses, thus allowing 

the same degree of freedom to engineer the electronic resonances as with simple quantum 

 
Figure 1.2: Layer stack of a compositional superlattice. A periodic set of coupled quantum wells form 

as shown on the right. 
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wells. As with bulk semiconductors, the there is a set of valance bands and a set of 

conduction bands separated by a fundamental bandgap. Lasers in the visible [24] and 

infrared [25] have been fabricated in superlattices using the electron transition across the 

fundamental bandgap. It is also possible to obtain photon emission between conduction 

minibands as demonstrated in superlattice quantum cascade lasers emitting in the far 

infrared [26] and terahertz frequency range [27]. Thus, the unique and flexible band 

structure of superlattice has proved useful for several purposes.  

One of the consequences of using heterostructures such as MQWs and 

superlattices is that translational symmetry found in bulk semiconductors is broken [28]. 

Superlattices lack symmetry between the directions that are in-plane of the layers (x and 

y) and the direction that is perpendicular to the layers (z). As a result, the electric 

susceptibility tensor has additional elements that are not found in bulk material. In the 

case of the third-order nonlinear susceptibility χ(3), bulk III-V semiconductors have four 

independent, non-zero tensor elements. In symmetric superlattices, the degeneracy in the 

bulk coefficients breaks down resulting seven new independent elements for a total of 

eleven. This leads to polarization dependencies in the third-order nonlinear properties of 

superlattice that are not found in or that are weak in bulk semiconductors. 

Another source of polarization dependence in the optical properties of 

superlattices is the lifted degeneracy between the light- and heavy-hole valence bands. As 

a result, the bandgap between the conduction band to the heavy-hole band differs from 

 
 
Figure 1.3: Electronic band structure of a superlattice. The solid black lines represent the conduction 

and valence band edges of the well and barrier materials. The grey areas represent the superlattice 

minibands formed due to strong coupling between quantum wells. 
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the bandgap involving the light-hole band. Since heavy-hole transitions are forbidden for 

light polarized perpendicular to the quantum well layers, the resonance points are found 

at different frequencies for each polarization [29]. Thus, the linear refractive index and 

nonlinear properties of the material depend on the polarization. 

Another advantage of using quantum-wells and superlattices is the ability to 

change their electronic band structures by using quantum-well intermixing [30]. As 

shown in Figure 1.4, the intermixing process starts with the material undergoing a 

“disordering” process whereby defects and interstitials are created in the lattice. This can 

be achieved by a number of methods including impurity-free vacancy disordering (IFVD) 

[30] and ion-implantation [31]. Next, the disordered material is heated by rapid thermal 

annealing (RTA) facilitating an interdiffusion process which changes the composition at 

the material interfaces and repairs the crystal. The compositional change modifies the 

potential profile across the quantum well and shifts the energy bands of the entire 

superlattice. By shifting the bandgap of the superlattice, the linear and nonlinear 

properties of the material are changed as well. In most materials, intermixing causes the 

 
Figure 1.4: Quantum-well intermixing process. The material undergoes disordering which creates 

defects and interstitials. After annealing, interdiffusion causes the interfaces between the two 

materials (GaAs and AlAs) to smear resulting in an altered bandstructure and larger bandgap. 

 9



bandgap to increase and the nonlinear strength to decrease. Furthermore, the shift in the 

bandgap moves the two-photon absorption peak to shorter wavelengths and places the 

operating wavelengths of the device out of the material resonance. As a result, the 

nonlinear strength is decreased further. The amount of shift in the bandgap can be 

changed by varying the processing parameters. Also, intermixing can be applied to select 

areas of the chip while other areas are left unintermixing or with different degrees of 

intermixing, thus allowing the bandgap energy and nonlinearities to be patterned across 

the wafer. This enables a mixture of components to be integrated onto the same chip. It 

also allows for the creation of device structures not achieveable in bulk materials. 

The GaAs/AlxGa1-xAs material system is of particular interest for creating 

superlattices. The half-bandgap of AlGaAs superlattices can be tuned over a wide range 

within the typical spectral ranges used in telecommunications systems. Thus, devices 

made in AlGaAs superlattice can benefit from the enhancement in the Kerr effect near the 

TPA resonance. Furthermore, with short period GaAs/AlGaAs superlattices, it is possible 

to “fully intermix” the superlattice with QWI. In this case, the amount of interdiffusion 

during annealing is high enough that the entire superlattice is mixed together. As a result, 

the superlattice becomes a bulk alloy of AlGaAs with a composition equivalent to the 

average amount of aluminum and gallium in the superlattice. Full intermixing yields the 

largest possible change in the bandgap of the superlattice and thus the largest modulation 

in the nonlinear coefficients. 

The versatility of GaAs/AlGaAs superlattice allows it to be engineered to suit the 

desired application. Hutchings and Kleckner [32] attempted to find an optimized structure 

for quasi-phase matched (QPM) second-harmonic generation in the 1550 nm wavelength 

range. A symmetric superlattice of GaAs and AlAs was chosen to maximize the change 

in the alloy composition after intermixing. The width of the GaAs well layers was set to 

fourteen monolayers, placing the bandgap at 1.643 eV (~750 nm) and the half-bandgap at 

a wavelength of ~1500 nm. The AlAs barrier layer width was chosen to be fourteen 

monolayers where the modulation in χ(2) after intermixing is maximized. This superlattice 

structure has been used in several QPM experiments to study the second-order nonlinear 

properties [33-35]. While the third-order nonlinear properties of this superlattice have 

been studied theoretically [28], they have yet to be measured. Such a study would be 
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required for creating photonic integrated circuits in superlattice with both second-order 

and third-order nonlinear devices. 

 

1.5 Outline of Thesis 

This thesis examines the linear and nonlinear properties of as-grown and 

intermixed 14:14 monolayer GaAs/AlAs superlattice-core waveguides. Chapter 2 covers 

measurements and calculations of the linear properties of superlattice including 

photoluminescence, linear index of refraction, confinement factor, waveguide dispersion, 

and linear loss. Accurate values for each of these linear properties are necessary to 

calculate the nonlinear coefficients. In Chapter 3, nonlinear absorption in superlattice 

waveguides is examined. This includes TPA in as-grown superlattice, and 3PA in 

intermixed superlattice. Again, it is necessary to obtain good values for the nonlinear 

absorption coefficients to evaluate other nonlinear properties. Chapter 4 examines 

nonlinear refraction in superlattice waveguides caused by the non-resonant optical Kerr 

effect below the half-bandgap. Specifically, this chapter examines self-phase modulation 

of a single linearly polarized waveguide mode, and cross-phase modulation between two 

orthogonally polarized modes. Chapter 5 looks into applications of superlattice to 

practical all-optical devices. In particular, figures of merit are discussed and design 

examples of nonlinear devices are presented. 
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Chapter 2  

Linear Optical Properties of 
Superlattice Waveguides 

 

 

 

2.1 Introduction 

The design of any optical device requires good knowledge of the linear optical 

properties of the material and the waveguiding structures. This includes the linear index 

of refraction, the material absorption peaks, the dispersive properties, and the linear loss. 

For devices such as quasi-phase matched waveguides which use both as-grown and 

intermixed superlattice [34], the linear index is important for correctly determining the 

grating period, duty cycle, and second-harmonic conversion efficiency. Furthermore, it is 

necessary to accurately measure the linear properties of a waveguide in order to 

accurately determine the nonlinear behaviour of the device. For the specific superlattice 

structure studied in this thesis, low-temperature photoluminescence and the linear index 

of refraction of slab waveguides have already been examined by Kleckner [36]. Those 

properties are re-visited here in addition to several other linear properties that are 

required to quantify the nonlinear properties of superlattice. 

This chapter examines the linear optical properties of superlattice waveguides. 

Measurements of room-temperature photoluminescence taken using a spatial scanning 

technique to isolate the superlattice layer from the rest of the structure are discussed. This 

method reveals details about the electronic bandstructure of the superlattice and verifies 

changes in the bandgap from quantum well intermixing. The linear index of refraction of 
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superlattice is calculated by using recent models for the index of bulk AlGaAs and by 

using a back-calculation method with measurements of the slab effective index. Spatial 

profiles of guided TE and TM modes of rib waveguides computed using a commercial 

mode solver are presented. From this, the amount of power confined to the superlattice 

core layer is found. The effective refractive index of the waveguides is calculated 

allowing further calculations of the birefringence, group velocity mismatch, and group 

velocity dispersion. Lastly, the results of linear loss measurements on both as-grown and 

intermixed waveguides carried out using the Fabry-Perot technique are discussed.  

 

2.2 Wafer Structure 

The structure of the superlattice wafer used is depicted in Figure 2.1. This same 

structure was used in Refs. [36, 37]. The core layer is a 0.6 µm-thick superlattice 

consisting of 75 repeating periods. Each period consists of 14 monolayers of GaAs as the 

quantum well material and 14 monolayers of AlAs as the barrier material for a total of 8 

nm per period. Immediately on either side of the superlattice are 0.3 µm-thick buffer 

layers of bulk Al0.56Ga0.44As. These layers were included to improve end-fire coupling 

efficiency since the superlattice layer is too small to adequately collect light. Increasing 

Figure 2.1: GaAs/AlAs superlattice wafer structure 
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the superlattice thickness would be problematic for growing the wafer by molecular-

beam epitaxy (MBE) and would compromise the ability to fully intermix the superlattice. 

Al0.56Ga0.44As was specifically chosen as the buffer layer since it has a larger bandgap 

and a smaller refractive index than Al0.50Ga0.50As, the average alloy of the superlattice 

that would form during complete intermixing. Thus, light would remain confined to the 

superlattice layer after intermixing. Cladding layers on either side of the buffer layers 

consist of Al0.60Ga0.40As with the upper cladding being 0.8 µm thick and the lower 

cladding being 4.0 µm thick. A 0.1 µm-thick cap layer of GaAs was added to prevent 

oxidation of the AlGaAs cladding. All layers were grown nominally undoped by MBE on 

a semi-insulating GaAs substrate oriented along the [100] crystal direction. 

Intermixed superlattice samples were fabricated using the sputtered silica-cap 

method [38]. A 50 nm layer of silica was sputtered onto the top surface of a wafer sample 

followed an additional 200 nm layer of silica deposited by plasma-enhanced chemical 

vapour deposition (PECVD). The sample then went under rapid thermal annealing (RTA) 

at a temperature of 850°C for 60 seconds. After annealing, the silica layers were removed 

with a wet etch in buffered hydrofluoric acid (HF) for 60 seconds.  

 

2.3 Photoluminescence 

Room temperature photoluminescence measurements were carried out on as-

grown and intermixed superlattice using a Raman spectrometer. The excitation beam 

used was a Nd:YAG laser operating at a wavelength of 532 nm. Samples were oriented 

such that the excitation beam was incident on the cross-section of the layer structure. An 

electronically-controlled motion stage was used to move the sample under the beam to 

scan across the layers from the substrate to the cap layer. Re-emitted light was passed 

through polarization filters to isolate the TE and TM polarizations. At each scan point, 

the wavelength of the photoluminescence peaks were identified using a fit to Gaussian 

curves. 

The results for as-grown superlattice are shown in Figure 2.2 for the TE and TM 

polarizations. These graphs show traces of the peak wavelength over the cross-section of 

the sample. The superlattice is located at the dip in the graphs between 1.5 and 2.5 µm. 
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Figure 2.2: Traces of the photoluminescence peak across the as-grown superlattice wafer cross-

section for the TE polarization and TM polarization. The top of the wafer is on the right side. 

The width of the dip is roughly 600 nm, which agrees well with the designed thickness of 

the superlattice layer. For the TE polarization, the photoluminescence peak is located at 

753 nm, which is close to the predicted bandgap wavelength of 750 nm. The TM 

polarization has a photoluminescence peak at 730 nm, which is 23 nm lower than in the 

TE polarization. This difference confirms the lifting of the degeneracy for the heavy-hole 

valence band in the superlattice. 

The TE polarization results also show unexpected peaks of 780 nm and 767 nm 

above and below the superlattice layer respectively. The same phenomenon happens in 

the TM mode with peaks of 765 nm and 745 nm. These peaks do not correspond to either 

the Al0.56Ga0.44As or Al0.60Ga0.40As layers since their emission peaks should be found at 

wavelengths below 620 nm. Examination of the wafer structure indicates the presence of 

unidentified asymmetric single quantum wells (ASQW) formed at the top and bottom of 

the superlattice. As shown in Figure 2.3, AlAs and Al0.56Ga0.44As form the barriers of a 

GaAs quantum well. Calculations of the quantum well energy levels were carried out 

using an algorithm developed by Street [39] and are detailed in Appendix A. The 
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bandgaps were computed as 787 nm for the heavy-hole transition and 756 nm for the 

light-hole transition, which agrees well with the photoluminescence data below the 

superlattice layer. By introducing an error of 10% into the GaAs well width, calculated 

bandgaps were 776 nm and 743 nm for the heavy-hole and light-hole transitions 

respectively. This agrees reasonably well with the PL peaks measured above the 

superlattice 

Photoluminescence results from measurements of intermixed superlattice are 

shown in Figure 2.4. Both the TE and TM polarizations show a peak at 598 nm. This 

agrees with a theoretical prediction of 592 nm [28] and closely corresponds with the 

direct bandgap of Al0.50Ga0.50As. Furthermore, there is no longer any appreciable 

polarization dependence. This indicates that the superlattice has been fully intermixed. 

On the bottom side of the core layer are peaks occurring at around 640 nm and 635 nm 

for the TE and TM mode respectively. In this case, there is a small polarization 

dependence. This may be an indication that the bottom most layers of the superlattice 

were not completely intermixed. 

 
Figure 2.3: Unintended GaAs quantum well at ends of superlattice core layer. 
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Figure 2.4: Traces of the photoluminescence peak across the intermixed superlattice wafer cross-

section for the TE polarization and TM polarization. The top of the wafer is on the right side. 

 

2.4 Linear Refractive Index 

In order to calculate the mode profiles for rib waveguides, it is necessary to know 

values for the refractive index of the superlattice core layer. Highly accurate values are 

required to accurately determine the guided mode profiles. Early calculations found that a 

small error of less than 1% can cause variations of up to 10% in the confinement factor 

and mode effective areas. Such large variations will directly affect the values of the 

nonlinear absorption and nonlinear refraction coefficients determined from measured 

data. In this section, models of the refractive index for a heterostructure are used with 

several different models of the refractive index in bulk AlGaAs to predict the value of the 

refractive index for superlattice across the spectrum between 1400 nm and 1700 nm. 

Measured values of the slab effective index for the particular waveguide structure studied 

in this work are used to back-calculate the index of the superlattice core layer. Both as-

grown and intermixed materials are studied with the latter being approximated as a bulk 

material of the average alloy. 
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2.4.1 Refractive Index Models for As-grown Superlattice 

In previous work by Kleckner [37], theoretical refractive index values for 

GaAs/AlAs superlattice were predicted using the form birefringence model [40]. Index 

values for the GaAs and AlAs layers were derived from models of Adachi [41] and 

Afromowitz [42]. As was shown, the theoretically predicted values failed to accurately 

match experimental measurements of the effective slab index. This reason for this is 

twofold. First, the Adachi and Afromowitz models are semi-empirical models based on 

refractive index data measured at wavelengths close to the material bandgaps of GaAs 

and AlAs. Thus, the index values calculated from these models are not as accurate for 

wavelengths near the half-bandgap. Second, the form birefringence model assumes that 

each of the material layers acts independently on the propagating optical field. However, 

the response of a semiconductor to an optical field is highly dependent on the electronic 

structure of the material. Since the strong coupling of the quantum wells modifies the 

electronic band structure of the superlattice as a whole, the assumption that the layers act 

independently is not entirely valid. While this model is not likely to predict the index of 

superlattice with high accuracy, it was shown to come close [37]. Thus, it is worthwhile 

to use the form birefringence model to at least obtain ballpark figures. 

The form birefringence model has the advantage that it takes into account the 

boundary conditions on the electric field at the interfaces of the layers, which are 

different for each polarization. Thus, the model is capable of predicting polarization 

dependencies in the linear index. For the TE polarization, the index of refraction is 

calculated as [37] 
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where tGaAs is the thickness of the GaAs layer, tAlAs is the thickness of the AlAs layer, 

nGaAs is the refractive index for GaAs, and nGaAs is the refractive index for AlAs. The 

index of refraction for the TM polarization is 
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The refractive index values for the GaAs and AlAs layers were derived from the 

semi-empirical models of Deri and Emanuel [43] and Gehrsitz et al. [44]. These models 

improve upon the models of Adachi and Afromowitz by specifically focusing on 

empirical data in wavelength ranges around 1550 nm. Figure 2.5 shows the predicted 

values of the superlattice index using the models of Adachi and Gehrsitz. The values 

yielded by the Deri and Gehrsitz model are virtually identical, and thus only the Gehrsitz 

model is shown. For both the TE and TM polarizations, the Gehrsitz model yields values 

lower than the Adachi model. Moreover, the amount of dispersion in the Gehrsitz curve is 

very different than the Adachi curve. The difference between the TE polarization index 

and the TM polarization index is around 0.038 for the Gehrsitz model and 0.043 for the 

Adachi model. 
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Figure 2.5: Predicted values of the refractive index of superlattice for the TE and TM polarizations 

based on the form birefringence model using the bulk AlGaAs index models of Gehrsitz and Adachi. 

Values produced by the Deri model are virtually identical to the values produced by the Gehrsitz 

model. 
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2.4.2 Back-calculation of Measured Index 

Original measurements of the effective refractive index for the slab waveguide 

structure using the grating coupler technique were reported by Kleckner et al. [36]. Given 

known values of refractive index for the other layers in the slab waveguides, the 

refractive index for the core layer can be found by performing a back-calculation. 

Lumerical’s MODE Solutions mode solver software was used in one-dimensional mode 

with the slab waveguide structure. Values for the effective slab index between 1400 nm 

and 1700 nm were calculated from a quadratic regression of the measured values [37]. 

The index of the core layer was varied in a trial-and-error algorithm until the calculated 

effective index from the mode solver matched the measured effective index. 

The indexes of buffer and cladding layers were calculated from the Gehrsitz model, 

Adachi model, and the Deri model. Preliminary results showed that use of the Adachi and 

Deri models led to convergence failures in the algorithm. This took place because these 

models predict values for Al0.56Ga0.44As and Al0.60Ga0.40As that are larger than the 

measured effective index. This does not match experiments in which light was guided in 

the superlattice slab layer. For the Adachi model, the inaccuracy at wavelengths near 

1550 nm is the likely source of the problem. Failure of the Deri model is likely due to 

interpolation that it uses to predict the bandgap for aluminum mole ratios greater than 

0.45. In contrast, the Gehrsitz model is based on empirical data at wavelengths near 1550 

nm and uses numerical fits to measured data for mole ratios greater than 0.45. As a result, 

it yields accurate values for the refractive index of the AlGaAs layers that are smaller 

than the slab effective index. Using the Gehrsitz model allowed the back-calculation 

algorithm to converge to reasonable values for the superlattice index. Thus, the Adachi 

and Deri models were not used in favour of the Gehrsitz model. 

Figure 2.6 shows back-calculated refractive index of as-grown superlattice for TE 

and TM polarizations along with predicted values. Error bars of 0.001 are derived from 

the original error in the measured slab effective index [37]. The polarization dependence 

is large with the difference between the index of refraction for the TE and TM 

polarizations being about 0.03 for wavelengths between 1400 nm and 1700 nm. In both 

polarizations, the Gehrsitz model comes closer to the measured values than does the 

Adachi model. However, the difference between the measured values and the Gehrsitz 
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Figure 2.6: Back-calculated values of the measured refractive index of as-grown superlattice for a) TE 

and b) TM modes. Also shown are predicted values using the Gehrsitz and Adachi models. 

model is nearly 0.02, which is large enough to significantly affect the mode profile and 

the location of the cutoff wavelength.  Thus, neither of the theoretical models is accurate 

enough to reliably calculate the mode profiles for a rib waveguide. For subsequent mode 

solution calculations, the measured values for the index of refraction are used. 

Back calculated values of the refractive index for intermixed superlattice are shown 

in Figure 2.7. Values for Al0.50Ga0.50As calculated from the Gehrsitz model are provided 

for comparison. For the TE mode, the difference between measured index and the index 

for Al0.50Ga0.50As is 0.01 at most. The difference between the TM mode and 

Al0.50Ga0.50As is considerably larger at around 0.02. As with non-intermixed superlattice, 

the difference between the measured and theoretical values is too large to accurately 

calculate the mode profiles. Birefringence in the measured index for intermixed 

superlattice is reduced to about 0.01 from about 0.03 for as-grown material. Thus, 

superlattice becomes less polarization dependent after intermixing. This indicates that the 

intermixed superlattice is nearly equivalent to bulk Al0.50Ga0.50As, the average alloy. 

Quadratic regression coefficients of the back-calculated refractive index are listed in 

Table 2.1. 
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Table 2.1: Coefficients for quadratic regression for the index of refraction for TE and TM 

polarizations in as-grown and intermixed material. The form of the regression is n = Aλ2+Bλ+C 

where λ is the wavelength (m). 

 A B C 

As-grown TE 3.1475×1010 -1.8012×105 3.3312 

As-grown TM -2.0801×1010 -1.9374×104 3.1776 

Intermixed TE 8.6600×1010 -3.6788×105 3.4709 

Intermixed TM -2.0420×1011 5.4389×105 2.7489 
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Figure 2.7: Back-calculated index of refraction values for intermixed superlattice. Also shown are 

index values for Al0.50Ga0.50As calculated from the Gehrsitz model 

2.5 Waveguide Properties 

2.5.1 Sample Fabrication 

Rib waveguides were fabricated in the wafer structure detailed in Section 2.2 for 

as-grown and intermixed superlattice. A 200 nm layer of silica was deposited onto the 

wafer samples by PECVD as hard mask layer. PMMA resist was spun onto the samples 

at 5000 rpm for 60 seconds. Several 3 µm-wide waveguides were directly written by 

electron-beam lithography (EBL). Development of the pattern took place in a 2.5:1 

mixture of methyl isobutyl ketone:propanol  (MIBK:IPA) over a duration of 45 seconds. 
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The pattern was transferred to the silica hard mask by reactive-ion etching (RIE) using a 

CHF3 chemistry. The remaining resist was removed with an O2 plasma. The GaAs and 

AlGaAs layers were etched to a depth of 0.8 µm by RIE using a SiCl4 chemistry. The 

silica hard mask was removed with a buffered HF wet etch. Finished waveguides are 

depicted in Figure 2.8. Photographs of the as-grown and intermixed samples are shown in 

Figure 2.9. A large amount of surface roughness is visible for the intermixed sample, 

while the non-intermixed sample had a relatively smooth surface. The increased 

roughness of the intermixed waveguides is thought to be the result of the intermixing 

process which produced damage to the surface. 

 
Figure 2.8: Superlattice rib waveguide structure 

a) b) 

Figure 2.9: Photographs of a) as-grown and b) intermixed superlattice waveguides taken under a 

microscope at 500x magnification. 
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2.5.2 Mode Profiles and Confinement Factor 

The spatial profiles of guided modes and effective waveguide indexes were 

determined using Lumerical MODE Solutions software. Refractive indexes of the bulk 

AlGaAs layers were derived from the Gehrsitz model. Back-calculated values of the 

superlattice from Section 2.4.2 were used for the core layer. Different refractive indexes 

were used in the solutions of the TE and TM mode. The mode solver was set in two-

dimensional mode with a mesh of 240 × 160 points over a simulation area of 12 µm × 8 

µm with metal boundaries. Figure 2.10 depicts the mode profile at 1550 nm for the 

fundamental TE and TM modes in as-grown superlattice. Mode profiles in the intermixed 

superlattice are similar. In all cases, no higher-order modes we found for either 

polarization. Thus the waveguides are single-mode for each polarization. At longer 

wavelengths of the studied range, both modes were found to increase in size. In the case 

 
a) 

 
b) 

Figure 2.10: Mode profiles of as-grown superlattice rib waveguides at 1550 nm for the a) TE mode 

and b) TM mode. 

 24



of the TM polarization, the mode profile extended deep into the lower cladding at 

wavelengths greater than 1600 nm. This also implies that the amount of leakage loss to 

the substrate will be greater in the TM mode. Furthermore, this indicates that the TM 

mode is approaching its cutoff wavelength. 

The relative amount of power confined to the superlattice core layer was 

calculated from the mode profiles. The confinement factor is defined as [45] 
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where f(x,y) is the modal distribution which is related to the irradiance by I(x,y) ~ |f(x,y)|2. 

The upper integral is taken only over the superlattice core region, and thus represents the 

amount of power propagating through the core. Figure 2.16 shows the dispersion of the 

confinement factor for the TE and TM modes. The error bars result from the uncertainty 

in the index of refraction for the superlattice core and in the etch depth of the 

waveguides. On average, only about 50% of the total power is confined to the core layer 
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Figure 2.11: Rib waveguide confinement factor 
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for the TE mode. Further investigation revealed that about 30% of the power is found in 

the buffer layers and the remaining 20% propagates in the cladding layers. Light is less 

confined in the TM mode which has confinement factors that are between 20-25% less 

than in the TE mode. The reduced confinement factor of the TM mode is due to a smaller 

index contrast of the superlattice core with the buffer and cladding layers. Light intensity 

in the core is significantly smaller for the TM mode, which will lead to reduced nonlinear 

effects.  

 

2.5.3 Mode Effective Index and Group Velocity Dispersion 

The mode solver was used to find the effective refractive index, of the guided TE 

and TM modes for the waveguide structure. Values of the effective index, neff, for as-

grown and intermixed waveguides are shown in Figure 2.12. A small error of 0.001 

results from the uncertainty in the index of the back-calculated superlattice refractive 

index. The lines are quadratic regressions of the form  

 

  (2.4) CΒ A neff ++= λλ2

 

where λ is the wavelength in meters and coefficients A, B, and C listed in Table 2.2. All 

of the curves show a similar trend except for the TM mode of the intermixed superlattice 

in which the curvature is opposite to the other curves. This implies that the group velocity 

dispersion is of the opposite sign for the intermixed TM mode. 

Birefringence in the waveguides is defined as [46]  

 

 eff,TMeff,TEf nnB −=  (2.5) 

 

where neff,TE and neff,TM are the effective indexes of the TE mode and TM mode 

respectively. The spectral dependence of the birefringence for as-grown and intermixed 

waveguides is shown in Figure 2.13. As-grown waveguides have large birefringence 

values of ~0.015 on average. This is the result of the large polarization dependence of the  

 26



Table 2.2: Coefficients for quadratic regression for the waveguide effective index for TE and TM 

modes in as-grown and intermixed material. The form of the regression is neff = Aλ2+Bλ+C where λ is 

the wavelength (m). 

 A B C 

As-grown TE 5.58×1010 -2.69×105 3.37 

As-grown TM 4.77×1010 -2.33×105 3.32 

Intermixed TE 9.10×1010 -3.80×105 3.45 

Intermixed TM -2.13×1010 2.15×104 3.16 
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Figure 2.12: Effective index of refraction for 3.0 µm-wide rib waveguides 

index of refraction of the superlattice. In contrast, birefringence in the intermixed 

waveguides is small, owing to the reduced polarization dependence of the index of 

refraction in intermixed superlattice. The error bars are the result of the 0.001 error in the 

effective index values. Co-propagating TE and TM modes will go in- and out-of-phase 

with eachother over the beat length which is defined as [3] 

 

 
B

LB
λ

= . (2.6) 
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For as-grown superlattice, LB was calculated to be ~0.105 ± 0.005 mm across the studied 

spectrum. Intermixed superlattice had a larger beat length of ~0.37 ± 0.03 mm. 

Considering a 1 cm long waveguide, the beat length is much smaller than the propagation 

length for both as-grown and intermixed superlattice. This is important when considering 

nonlinear interactions between two co-propagating modes. 

As a result of the birefringence, TE and TM modes will propagate with different 

speeds. The group velocity is defined as 
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where β1 is the first derivative of the propagation constant β for a guided mode, which is 

defined as 
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Using Equation (2.4), the group velocity is calculated as 
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Figure 2.13: Linear birefringence for superlattice-core rib waveguides 
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where c is the speed of light. Figure 2.14 shows the spectral dependence of the group 

velocity mismatch ∆vg = vg,TE – vg,TM. The mismatch is large for as-grown waveguides as 

a result of the large birefringence. At 1545 nm, the difference in group velocity is about 

88.3×103 m/s. For a mixed TE/TM mode input to a 1 cm-long waveguide, the TE 

component would lag the TM component by about 1 ps at the output. For optical pulses 

with durations on the order a few picoseconds, the group velocity dispersion will 

significantly affect the nonlinear interactions between the polarizations. In the case of the 

intermixed waveguides, the mismatch decreases rapidly and crosses through zero.  

The group velocity dispersion is related to the second-order dispersion constant β2 

(also known as the GVD parameter) which is defined as 
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Using Equations (2.4) and (2.8), the GVD parameter is calculated as 
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Figure 2.14: Group velocity mismatch between the TE and TM polarizations for rib waveguides 
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Values for β2 are plotted in Figure 2.15 for the TE and TM modes. Across the spectrum, 

β2 is on the order of 1024 s2/m, which is on the same order of magnitude as values for bulk 

AlGaAs. For a Gaussian pulse, the change in the pulse length can be calculated as [3]  
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where T0 is the original pulse length and z is the propagation distance. Using the GVD 

value in as-grown material for the TE mode at 1625 nm, where GVD is greatest, the 

change in a 1.5 ps long pulse after passing through a 1 cm long waveguide is less than 

1%.  

All values of the GVD are positive in sign except for the TM mode in intermixed 

waveguides. Further investigation showed that the small uncertainty in the effective index 

values can drastically change the coefficient A from the quadratic regression. It was 

found that it is possible to obtain a fit in which A is positive in value for intermixed 

waveguides in the TM mode. Thus, the apparent negative value of β2 is likely the product 
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Figure 2.15: Group velocity dispersion for rib waveguides 
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of an imperfect curve fitting of the index data within the range of uncertainty. It is also 

noted that β2 in this case is close enough to zero that it may indeed be positive. 

Furthermore, it is likely close in value to β2 for the TE mode due to the reduced 

polarization dependence found in the other linear properties of intermixed superlattice. 

This conclusion is apparent from the original data for the slab effective index [37]. 

 

2.6 Linear Loss 

The waveguides fabricated have linear losses associated with them that will 

reduce their effectiveness. Scattering losses occur because of imperfections in the 

material such as point defects, and from roughness on the surface and on the waveguide 

sidewalls. Leakage losses result from imperfect confinement of the mode to the 

waveguide core which leads to power being coupled to the substrate. Absorption losses 

are the result of carrier excitation by incident photons. Since the wavelengths which are 

considered in this study are at photon energies far below the bandgap, absorption losses 

will be small and the result of defects and impurities. Directional coupling is possible 

between adjacent waveguides and results in a loss in the waveguide under observation. 

However, the distance between waveguides is over 10 µm and thus directional coupling 

is minimal for sample lengths of about 1 cm. In this section, the linear losses of the as-

grown and intermixed waveguides are measured using the Fabry-Perot method.  

 

2.6.1 Experimental Methods 

The Fabry-Perot technique is a simple method for determining the linear loss of a 

waveguide [47]. With sufficiently reflective end facets, a waveguide acts as a Fabry-Perot 

cavity with well defined resonator modes. The advantage of the Fabry-Perot technique is 

that it does not depend on the coupling efficiency at the front facet. Instead, it depends 

only on the effective index and length of the waveguide, both of which determine the 

resonator modes. Thus, it is only necessary to measure the transmission curve of the 

waveguide across a small spectral region around the wavelength of interest. 

Linear loss coefficients, α0, for a Fabry-Perot cavity are calculated as [48] 
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where L is the cavity length, R is the facet reflectivity, and K is the peak-to-peak 

transmission coefficient. With an incident light source that is perpendicular to the facet, 

the facet reflectivity is  
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where neff is the effective index of the waveguide. The transmission coefficient is defined 

as 
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where Tmax and Tmin are the value of the maximum and minimum points of the Fabry-

Perot transmission spectrum. The distance between maxima points is known as the free-

spectral range and is calculated as 

 

 
Lneff2

2λλ =∆ . (2.16) 

 

The experimental setup for the Fabry-Perot technique is shown in Figure 2.16.  A 

Figure 2.16: Experimental setup for Fabry-Perot loss measurement 
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continuous wave laser beam was generated from an HP8164 measurement system with an 

HP81642B tunable laser module having a 100kHz spectral linewidth. Light was guided 

from the tunable laser through a fibre to the free-space coupler (FSC). The polarization of 

the beam is set by the half-waveplate (λ/2) and the polarizing beam cube (PBS). 

Waveguide samples were mounted on an end-fire rig between a pair of 40× objective 

lenses. Output from the waveguides was focused onto the IR camera to aid in coupling 

light to one of the many waveguides on the sample. PM1 and PM2 measured the input 

and output power respectively. The tunable laser was set to scan in small steps over a 

small spectral range centered on a wavelength of interest, and the input and output 

powers were recorded at each step.  

 

2.6.2 Results 

As-grown and intermixed waveguide samples were 1.2 cm long and 0.5 cm long 

respectively. The tunable laser was set to scan in 0.01 nm steps for the as-grown sample 

and in 0.02 nm steps for the intermixed samples to give sufficient resolution within their 

free-spectral ranges. Figure 2.17 shows the transmission spectrum around 1545 nm for 
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Figure 2.17: Fabry-Perot transmission spectrum around 1545 nm in the TE mode for as-grown 

superlattice. 
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the TE mode in the as-grown sample. Transmission spectra for the TM polarization and 

for the intermixed sample are similar. The minima and maxima points were averaged to 

give a mean value for K and thus a mean value for α0. 

Linear loss coefficients for the as-grown superlattice for wavelengths between 

1505 and 1640 nm are shown in Figure 2.18. The TM mode is more lossy than the TE 

mode, with losses being about 0.25 cm-1 for the TE mode and 0.70 cm-1 for the TM 

mode. This is likely due to the reduced confinement of the TM mode to the waveguide 

core. As a result, the light would be more susceptible to surface and sidewall roughness 

causing scattering. Also, leakage into the substrate may also be larger. The curve is 

relatively flat for the TE mode. However, the TM mode is flat only up to a wavelength of 

about 1565 nm. After this point, the loss increases rapidly and then flattens out just 

beyond 1605 nm. This indicates that the TM mode may be approaching its cutoff 

wavelength. 

Measured loss values for intermixed waveguides are shown in Figure 2.19. Both 

polarizations are very lossy with α0 values of ~7.0 cm-1. The large loss is likely due to a 

high density of defects that were formed during the intermixing process [49]. Trap states 

can result from these defects and absorb light at wavelengths at the wavelengths studied. 
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Scattering from point defects in the lattice should not occur since they are much smaller 

than the wavelengths used. However, coallesence of these point defects would create 

imperfections large enough to result in significant scattering. From observeations of the 

sample under a microscope, the surface of the sample was observed to be much rougher 

than in the as-grown samples. As a result, the scattering loss in the waveguides would be 

significantly higher than the as-grown sample. The TM mode has consistently higher loss 

than the TE mode, but the difference is not as great as in the as-grown waveguides. This 

is the result of the similarity in the confinement factors for the TE and TM modes in 

intermixed waveguides. 

The uncertainty in the measured results is mostly due to variation in the value of 

K from one maxima/minima pair to the next in the transmission spectrum. The error in K 

was about 16% in one case, and less than 10% in all others, while the error in the 

effective index is less than 0.1% and thus it can be ignored. The measured lengths of the 

samples are accurate to about 0.02 cm, thus the error in the 0.5 cm intermixed sample is 

2.5% while the error in the 1.2 cm as-grown sample is less the 1%. 
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2.7 Conclusions 

In this chapter, the linear properties of as-grown and intermixed superlattice have 

been studied. Photoluminescence experiments exhibited the expected polarization 

dependence in the re-emitted light for as-grown superlattice. This indicates that heavy-

hole valance band degeneracy has been lifted. Intermixed samples show 

photoluminescence shift of ~150 nm in the TE polarization and reduced polarization 

dependence that indicates complete intermixing. Values of the index of refraction in as-

grown and intermixed superlattice were back-calculated from measurements of the slab 

effective index. Theoretical models of the refractive index for superlattice were not able 

to make adequate predictions despite the use of improved models of bulk AlGaAs from 

Gehrsitz and Deri. Thus, it was necessary to use measured index for all subsequent 

calculations and experiments on the linear properties of superlattice. 

Superlattice waveguides were studied for mode confinement, dispersion, and 

linear loss. Mode profiles calculated showed the TE mode is more confined to the 

superlattice layer than the TM mode. This is due to reduced index contrast between the 

core and cladding layers for the TM mode. Birefringence is high and results in a large 

group velocity mismatch between the TE and TM polarizations. GVD is on the same 

order as bulk AlGaAs and is significant enough to affect the nonlinear behaviour. The 

linear loss is low for as-grown superlattice and shows significant polarization 

dependence. Intermixed waveguides are much more lossy, which is likely due to an 

increase in the number of defects and surface roughness. The polarization dependencies 

of the mode confinement and loss will greatly affect the nonlinear behaviour of the 

waveguides. 
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Chapter 3  

Nonlinear Absorption in As-Grown 
and Intermixed Superlattice 

 

 

 

3.1 Introduction 

Nonlinear multiphoton absorption in a material can have both useful and 

detrimental effects. In the case of the Kerr effect, nonlinear absorption reduces the 

amount of power available for causing phase shifts and refractive index changes. This 

decreases the effective Kerr coefficient of the material. To properly characterize the 

actual Kerr coefficient and to later design practical devices based on nonlinear refraction, 

it is necessary to measure the strength of nonlinear absorption in the waveguiding 

structures used. 

The dominant nonlinear loss mechanism depends greatly on the electronic 

structure of the material and the spectral range of interest. In this study, the interest is in 

wavelengths near the 1550 nm telecommunications band. The half-bandgap of as-grown 

14:14 GaAs/AlAs superlattice lies near 1500 nm, and thus the dominant nonlinear loss 

mechanism will be two-photon absorption. In the case of intermixed superlattice, the 

half-bandgap was determined to be around 1200 nm. Since 1550 nm is far below the half-

bandgap of intermixed superlattice, the dominant nonlinear loss mechanism will be three-

photon absorption. 

This chapter discusses nonlinear absorption in as-grown and intermixed 

superlattice waveguides. TPA measured in as-grown superlattice-core using the inverse 
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transmission method and picosecond pulses is examined. A study of 3PA measured in 

intermixed superlattice-core waveguides using the inverse transmission squared 

technique and femtosecond pulses is presented. The spectrum of light emitted from the 

recombination of carriers excited by nonlinear absorption is also examined.  

 

3.2 Two-photon Absorption in As-grown Superlattice 

3.2.1 Theory 

Two-photon absorption is a process in which a valence band electron absorbs two 

photons and transitions to the conduction band. As illustrated with simplified band 

structure in Figure 3.1, this electron transition can be either direct or indirect [51]. 

Absorption of the first photon is modeled as a transition to a virtual energy level at the 

midgap. The second photon completes the transition to the points near the conduction 

band minima. In the case of indirect transitions, phonon assistance is required. Since this 

is a low probability event, indirect TPA is much less efficient than direct TPA for similar 

bandgaps. Transitions can occur from either the heavy-hole (HH) or light-hole (LH) 

 
Figure 3.1: Band structure of a typical semiconductor showing direct and indirect electron 

transitions by TPA. Reproduced from [50]. 
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valence bands. In the case that the valence band minima do not occur at the same energy, 

there will be different energy gaps and thus multiple TPA resonances. Since transitions 

from the heavy-hole band are forbidden with TM polarized light and thus the TPA peak 

for the TM mode occurs at a different wavelength than for the TE mode. In either case, 

TPA should only occur for photon energies above the half-bandgap points for each 

polarization. However, band tail states that have lower energies than the bandgap can 

cause a significant amount of TPA just below the half-bandgap [20]. 

TPA causes an increase in the absorption that is proportional to the intensity of 

the optical field. From Equation (1.3), the change in the loss coefficient is 

 

 I2αα =∆  (3.1) 

 

where α2 is the TPA coefficient and I is the intensity. At high input powers, the 

transmission through a waveguide will simultaneously be affected by both linear losses 

and TPA. The intensity is a function of the distance, z, and can be expressed as [52] 
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Accounting for the coupling efficiency, η, and the reflectivity of the waveguide facet, R, 

Equation (3.2) can be solved for a propagation distance L to yield the inverse of the 

transmission [53] 
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where Iin and Iout are the input and output intensities respectively. By measuring the 

transmission of a beam through a medium versus the input intensity, the value of α2 can 

be calculated from the slope of the inverse transmission curve, m, according to [48] 
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This technique is known as the inverse transmission method.  

In a waveguide structure, the intensity is not uniform across the mode profile and 

it is necessary to account for this when calculating the TPA coefficient. For a weakly-

guiding structure, it can be assumed that the transverse mode profile does not 

significantly change over the propagation distance in the presence of nonlinear 

absorption. Using the formalism of Grant [45], the effective ∆α for a waveguide can be 

expressed as  
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where the spatial dependence of both I and ∆α are accounted for. A waveguide can be 

treated as though it has a uniform nonlinearity and thus ∆α(x,y) is a constant. Using 

Equation (3.1) for ∆α(x,y), Equation (3.5) simplifies into 
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where α2,eff is the effective TPA coefficient for the waveguide, and  is the third-order 

nonlinear effective intensity. The optical power, P, is defined as 
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and  is the third-order effective mode area which is expressed as )3(
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effI  can be used in Equation (3.3) in place of Iin. However, this gives the effective TPA 

coefficient for the waveguide structure as a whole. In order to quantify the behaviour of 

the superlattice alone, it is necessary to isolate its contribution from the whole. In a 

multilayered waveguide structure employing different materials each with a different 

constant valued α2,(i), Equation (3.5) must be expanded as 
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where the integrals are taken over the boundaries of each material. This equation may be 

simplified and equated to Equation (3.6) giving 
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are the third-order effective areas for each material i. Thus, each material contributes to 

the nonlinear absorption in proportion to its TPA coefficient, and by the amount and 
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intensity of the mode overlap with that material. The TPA coefficient of the layer of 

interest can be solved for given known values of α2 for the other layers. 

 

3.2.2 Previous Studies of TPA in Semiconductors 

Two-photon absorption has been measured in a variety of bulk semiconductors 

and quantum confined structures. Dinu et al. studied TPA in bulk silicon using the Z-scan 

technique at wavelengths above the half-bandgap [54]. TPA coefficients were measured 

as 0.79 cm/GW at 1540 nm and 0.74 cm/GW at 1270 nm. Two different compositions of 

bulk AlGaInAs were studied by Villeneuve et al. at wavelengths near 1550 nm [55]. The 

value of α2 was measured to be 63 cm/GW the composition with the smaller bandgap and 

20 cm/GW for the other. Zilkie measured TPA in AlGaInP MQW semiconductor optical 

amplifiers (SOA) [48]. At 1600 nm, the TE mode had a α2 value of ~300 cm/GW and the 

TM mode had a α2 of ~400 cm/GW. In all of these cases, the TPA coefficients were 

measured at wavelengths above the half-bandgap where TPA is expected to be strong.  

Several studies have been carried out in AlGaAs-based materials at wavelengths 

below the half-bandgap. TPA was measured for bulk Al0.18Ga0.82As-core waveguides by 

Aitchison et al. using the inverse transmission method [20]. Near the half-bandgap of 

1500 nm, the value of α2 was ~1.0 cm/GW for the TE mode and ~0.2 cm/GW for the TM 

mode. This confirmed the anisotropy of TPA in zinc-blende semiconductors predicted by 

Hutchings and Wherrett [56]. The value of α2 quickly decreased for both modes as the 

wavelength was increased beyond 1500 nm until reaching a value of nearly zero in the 

TM mode near 1540 nm. 

Bulk AlGaAs and GaAs/AlGaAs MQW waveguides were studied by Islam et al. 

at wavelengths between 1650 nm and 1700 nm, which were below the half-bandgap [57]. 

For the bulk waveguides, Al0.20Ga0.80As was chosen for the core layer. The MQW 

waveguides had a core layer with 200 periods of 4.0 nm GaAs wells and 7.0 nm 

Al0.30Ga0.70As barriers. The half-bandgap of the MQW was measured at ~1600 nm while 

the half-bandgap of the bulk AlGaAs is calculated as ~1480 nm using the numerical fit of 

Adachi [41]. Measurements of the TPA coefficients for bulk AlGaAs using a pump-probe 

technique yielded a value of 0.026 cm/GW. MQW waveguides were measured using the 
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inverse transmission technique and showed a 2.4-times enhancement and large 

polarization dependence with TE modes and TM modes having average α2 values of 0.65 

cm/GW and 0.40 cm/GW respectively. The enhancement in MQWs was attributed to 

strengthened exciton interactions. The polarization dependence was attributed to the 

differing electron transition energies of TE and TM polarized light. 

Another study of GaAs/AlGaAs MQW waveguides was carried out by Yang et al. 

[58]. The core layer consisted of 85 periods of 7.0 nm GaAs wells and 10 nm 

Al0.30Ga0.70As barriers. Measurements were carried out for wavelengths between 1500 

nm and 1650 nm. As with other studies of MQW waveguides, the TPA strength showed 

an enhancement over bulk material and strong polarization dependencies. For shorter 

wavelengths, peaks in the TPA dispersion matched known exciton resonances for this 

structure. At their peak, α2 was as large as 11.0 cm/GW for the TM mode at around 1550 

nm and ~9.0 cm/GW for the TE mode at around 1500 nm. 

 

3.2.3 Experimental Methods 

Measurement of the nonlinear properties of superlattice waveguides requires an 

optical field of sufficient power to cause observable effects. For the experiments in this 

study, a pulsed laser system was used to achieve high peak powers with moderate 

average powers. The laser system shown in Figure 3.2 consisted of a mode-locked 

Ti:sapphire laser optically pumped by a frequency-doubled Nd:YVO4 diode-pumped 

laser. Output pulses were between 2.5 and 1.5 ps and were emitted at a rate of 76.5 MHz 

with center wavelengths from 730 nm to 820 nm. The output of the Ti:sapphire laser was 

converted to wavelengths between 1450 nm and 1650 nm using a KTP-based singly-

resonant optical parametric oscillator (OPO). Pulse widths were measured using an 

autocorrelator and the center wavelength of the pulses was measured using a 

spectrometer.  

Superlattice waveguide samples were mounted onto an end-fire rig. A 40× laser 

diode objective lens with an antireflection coating for wavelengths near 1550 nm was 

used to couple light into the waveguides. On the output end, a 40× objective lens was 

used to image the output light onto several instruments. Newport 1830-C optical power 
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meters with 818-IR detectors measured the amount of input and output power. The 

spectrum of the output pulses was measured with an ANDO AQ6317B optical spectrum 

analyzer (OSA) using light guided to it through a multi-mode fiber. An infrared camera 

was used to find and couple light to the waveguides on the sample. An optical attenuator 

was made up of a polarizing beam cube and a half-waveplate mounted in computer-

controlled rotation stage. A half-waveplate was placed before the input objective to set 

the polarization of the beam to either TE or TM. 

Pulses from the laser system were modeled as Gaussian in shape. Given the 

average power of the laser Pave, the repetition rate f, and the full-width at half maximum 

(FWHM) pulse width τFWHM, the peak pulse power can be calculated as [48] 
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πτ f
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2ln2

0 = . (3.12) 

 

The maximum average power at the front facet of the waveguide sample was ~100 mW, 

which gives a maximum peak power of ~800 W.  

The transmission through a single waveguide was measured as a function of input 

peak intensity. Figure 3.3 shows a plot of this the inverse transmission for the TE mode at  

 
Figure 3.2: Experimental setup for measurement of nonlinear optical properties of superlattice 

waveguides using an OPO-based ultrafast laser system 
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Figure 3.3: Measured inverse transmission of an as-grown superlattice waveguide at 1525 nm in the 

TE mode 

a wavelength of 1525 nm in as-grown superlattice. At lower input intensities, the 

transmission behaviour is inconsistent with the general trend. This is likely due to noise 

in the output power detector or leakage of the orthogonal polarization through the 

attenuation setup. Thus, the measured transmission values at lower intensities were 

ignored. At higher powers, the curve slopes upwards in a linear fashion. The straight-line 

trend of this curve at high powers indicates that TPA is the dominant nonlinear loss 

mechanism for as-grown superlattice waveguides. This portion of the curve was fit to a 

straight line to obtain the slope of the inverse transmission. 

 

3.2.4 Contribution of AlGaAs Buffer and Cladding Layers 

The relationship between the multiphoton absorption coefficients and the bandgap 

of direct-gap semiconductors was studied by Wherrett [50]. Using a simplified band 

structure model, the TPA coefficients were found to obey the following equation [59]: 
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where K is a material dependent constant, Ep is the Kane momentum, n0 is the linear 

index of refraction, Eg is the bandgap energy, ω is the optical frequency, and F2 is a 

function representing the band structure. The constants K and Ep are nearly material 

independent. The function F2 is similar for most semiconductors and only gives the 

frequency dependence relative to the bandgap energy. Thus, the dominate factor in 

Equation (3.13) is Eg which is raised to the third power. Given known values of α2 for 

one semiconductor, the values for another are approximated using the scaling rule that α2 

is proportional to Eg
-3.  

The value of α2 for bulk AlGaAs layer can be approximated using the scaling 

rules and measured coefficients for Al0.18Ga0.82As reported by Aitchison [20]. Values for 

the direct bandgap of Al0.18Ga0.82As, Al0.56Ga0.44As and Al0.60Ga0.40As were calculated as 

1.65 eV, 2.12 eV, and 2.17 eV using the empirical fit of Adachi [41]. The scaling rules 

give α2 reduction factors of about 45% for the buffer and cladding layers. Values of α2 for 

Al0.56Ga0.44As using this method are shown in Figure 3.4. At a wavelength of about 1495 

nm, the scaling rules yield values for α2 of ~0.45 cm/W for the TE mode and ~0.1 cm/W 

for the TM mode.  

Further consideration must be given to the position of the band edge relative to 

1490 1500 1510 1520 1530 1540 1550 1560
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

α 2 (c
m

/G
W

)

Wavelength (nm)

 TE Al0.18Ga0.82As
 TM Al0.18Ga0.82As
 TE Al0.56Ga0.44As
 TM Al0.60Ga0.44As

 
Figure 3.4: Measured TPA coefficients for bulk Al0.18Ga0.82As [20], and scaled values for 

Al0.56Ga0.44As and  Al0.60Ga0.40As 
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the photon energies considered in this study. Wavelengths of 1500 nm and longer are 

detuned from the direct half-bandgap of Al0.56Ga0.44As by ~150 nm. Such a large 

detuning indicates that TPA should be minimal, almost zero. It is instructive to bear in 

mind that TPA coefficients for Al0.18Ga0.82As in the TE mode are reduced to nearly 10% 

of their value after only a detuning of ~60 nm from the half-bandgap. Based on distance 

from the TPA resonance from the wavelengths of interest, the TPA coefficients are 

assumed to be nearly zero for Al0.56Ga0.44As. Thus, along with the reduction predicted by 

the scaling laws, the contribution of the buffer and cladding layers is taken to be 

negligible. 

 

3.2.5 Calculation of Third-order Effective Area 

Given that the contribution of the cladding and buffer layers is insignificant, only 

the superlattice core layer needs to be considered. Using the mode profiles from Section 

2.5.2 and Equation (3.11) taken over the superlattice layer, the core effective mode areas, 

, for wavelengths between 1505 nm and 1625 nm were calculated and are shown 

in Figure 3.5. The TM mode has  between two- and three-times larger than the TE 
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Figure 3.5: Core third-order effective mode area for as-grown superlattice rib waveguides 
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mode. Just as the reduced confinement of the TM mode indicated, this large difference in 

the shows that the nonlinear effects will be greatly reduced in the TM mode 

relative to the TE mode. 

)3(
,coreeffA

The errors in the calculated values result from two sources of uncertainty: (1) the 

index of refraction for the superlattice, and (2) the etch depth of the rib waveguides. In 

the case of the superlattice index, an error of -0.001 yielded variations in  between 

4% and 7% for the TM mode and < 1% for the TE mode. Uncertainty in the etch depth 

was estimated at 50 nm giving variations in  of up to 13% in the TE mode and 5% 

in the TM mode. Thus, the total error in  was calculated as ~20% in the TM mode 

and ~6% in the TE mode. 

)3(
,coreeffA

)3(
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)3(
,coreeffA

 

3.2.6 Results 

The value of α2 was calculated for the as-grown superlattice layer using 

measurements of the slope of the inverse transmission curves m, calculated  

values, and Equation (3.4). Figure 3.6 shows α

)3(
,coreeffA

2 for the TE and TM modes for 

wavelengths between 1505 nm and 1625 nm. The values are on the same order as that 

measured in bulk AlGaAs waveguides [20]. However, TPA is consistently stronger in the 

superlattice for both modes with values of α2 being up to four-times greater. This 

enhancement is similar to that seen in GaAs/AlGaAs MQW waveguides [58]. A large 

anisotropy is present with the TE mode having α2 values up to four-times greater than in 

the TM mode at photon energies near the half-bandgap. This polarization dependence in 

α2 is similar to that found in bulk AlGaAs [20]. 

The shapes of the curves indicate several characteristics of the waveguide 

structure. First, the TPA coefficient rapidly increases for the TE mode as the half-

bandgap is approached. However, the TM mode remains relatively flat. This shows that 

there is a difference in the resonance points for TE and TM polarized light. The shape of 

both curves is inconsistent with the known dispersion of TPA in most simple materials 

such as bulk AlGaAs. According to theory, the curves should monotonically decrease 

with increasing wavelength. However, as is seen here, the curves appear to have small 

 48



peaks between 1565 nm and 1605 nm for the TE mode, and between 1545 nm and 1565 

nm for the TM mode. In Section 2.3, photoluminescence measurements indicated the 

presence of asymmetric GaAs quantum wells at the top of the superlattice layer with 

wavelengths of 780 nm in the TE mode and 767 nm in the TM mode. The half-bandgaps 

of these resonances lie at 1560 nm and 1534 nm, which nearly coincide with the apparent 

peaks of the TPA curves. Thus, there is strong evidence that these quantum wells are 

affecting the nonlinear properties of these waveguides. 

Error in the measured values results from uncertainty in several factors. Core 

effective area values had errors of up to 13%, as was discussed in the previous section. 

Uncertainty in the values of the linear loss coefficients of up to 16% resulted in errors of 

less than 1%. Variation in the pulse width reading from the autocorrelator introduced 

errors of about 6%. The reflectivity of the facets are based on the effective index of the 

waveguides, which had small errors of <1% and thus can be ignored. Thus, the total error 

in each of the measured α2 values ranged between 7% and 12%. 

For intermixed superlattice waveguides, no changes in the transmission 

characteristics of TPA were observed. This was expected since the intermixed 

superlattice showed PL signatures that would place the TPA resonance at least 150 nm 
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Figure 3.6:  Dispersion of the TPA coefficients for as-grown superlattice below the half-bandgap 
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away from the wavelengths used in the experiments. Using the same arguments as were 

used for the TPA contribution of the buffer and cladding layers, it is assumed that the 

TPA coefficients for intermixed superlattice are nearly zero.  

 

3.3 Three-photon Absorption in Intermixed Superlattice 

3.3.1 Theory 

Three-photon absorption is a process in which an electron transitions to the 

conduction band from the valence band by simultaneously absorbing three photons. As 

depicted in Figure 3.7, this involves two virtual transitions in which photon energies of at 

least one-third the bandgap are absorbed. Thus, the 3PA resonance peak occurs at 

wavelengths three-times longer than the single-photon absorption peak. As with TPA, 

indirect transitions are relatively inefficient for the same bandgap energy as direct 

transitions since phonon assistance is required.  

3PA is associated with the fifth-order nonlinearity. It causes a change in the loss 

 
Figure 3.7: Three-photon absorpiton process between valence and conduction band. Reproduced 

from [50]. 
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coefficient that is proportional to the square of the optical intensity as expressed in  

 

  (3.14) 2
3 Iαα =∆

 

where α3 is the 3PA coefficient. If TPA is negligible and 3PA is the dominant nonlinear 

absorption process, the propagation of a beam of light at large intensities can be 

described as [60] 
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Solving this equation over a propagation distance of L yields the inverse transmission 

squared [20] 
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As with TPA, the slope of this curve, m, is proportional to the 3PA coefficient. Thus, α3 

can be calculated as 
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This is illustrates the inverse transmission squared method for measuring 3PA. 

The effective optical intensity can be calculated in the same manner as was done 

with TPA using the formalism of Grant [45]. For each material i in the waveguide, the 

fifth-order effective intensity, , can be calculated from the input power and the fifth-

order effective area 
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effI
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The effective 3PA for the waveguide as a whole is the sum of the individual 3PA 

contributions from each material. 

As with TPA, 3PA in direct-gap semiconductors was found to scale with the 

bandgap energy [50]. The 3PA coefficient can be calculated as 
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where P is the nearly material independent Kane parameter. The last term describes the 

dispersion of α3 relative the one-third the bandgap.  The value of α3 scales according to 

Eg
-7, thus large bandgap differences between materials results in a large difference in the 

3PA strength. 

 

3.3.2 Previous Studies of 3PA in Semiconductors 

There are only a few studies of three-photon absorption in semiconductors. Sheik-

bahaei et al. studied 3PA in doped InSb, a narrow gap semiconductor [61]. Using a CO2 

picosecond laser system, the value of α3 was determined to be 0.2 cm3/GW2 at photon 

energies around 0.07 eV. 3PA was also studied in photodiodes made of the wide gap 

semiconductor GaN by Streltsov et al. [9]. Using 60 fs pulses from a Ti:sapphire laser at 

820 nm, α3 was measured to be 1.05 × 10-10 cm3/GW2. 

Bulk Al0.18Ga0.82As-core waveguides were studied for 3PA by Kang et al. using 

the inverse transmission squared method [60]. 3PA coefficients were on the order of 0.1 

cm3/GW2 and increased with increasing wavelength over a spectral range from 1500 nm 

to 1660 nm. Since the one-third bandgap for Al0.18Ga0.82As lies at around 2250 nm, this 
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behaviour is expected since the 3PA peak is being approached. In another study by Islam 

et al. [57], bulk Al0.20Ga0.80As had α3 values of 0.004 cm3/GW2 for wavelengths between 

1660 nm and 1700 nm.  

 

3.3.3 Calculation of Fifth-order Effective Area and Contribution of 
Bulk Layers 

Calculation of fifth-order effective area for the intermixed superlattice core layer, 

, was carried out using the mode profiles for intermixed waveguides from Section 

2.5.2 and Equation (3.18). Figure 3.8 shows the results of this calculation for wavelengths 

between 1400 nm and 1600 nm. The trend is similar to that seen in the third-order 

effective areas for as-grown waveguides. In both polarizations,  increases with 

increasing wavelength due to decreasing confinement. However, there is much less 

difference between the polarizations owing to the reduced anisotropy of the linear index 

of intermixed superlattice.  
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An error of 0.001 in the intermixed superlattice index of refraction results in an 

uncertainty in  of up to 2% for the TE mode and 3% in the TM mode. An error of 

50 nm in the etch depth of the waveguides causes an error of up to 11% for the TE mode 

and 5.5% in the TM mode. Thus, the total uncertainty in the value of   is 13% and 

8.5% for the TE and TM modes respectively.  

)5(
,coreeffA

)5(
,coreeffA

As with TPA, the contribution of the AlGaAs buffer and cladding layers must be 

considered when calculating the effective area and the 3PA coefficient. The effective area 

of the buffer and cladding layers, , was calculated to be nearly an order of 

magnitude larger than . This would give a contribution to ∆α that is at least an 

order of magnitude smaller than the contribution of the core layer. Furthermore, using the 

scaling law of Equation (3.19), the value of α

)5(
,cladeffA

)5(
,coreeffA

3 for Al0.56Ga0.82As is nearly 30% lower than 

in Al0.50Ga0.50As, which intermixed superlattice appears to approximate. Thus, the buffer 

and cladding layers should contribute to 3PA by over an order of magnitude less than the 
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Figure 3.8: Fifth-order core nonlinear effective areas for intermixed superlattice rib waveguides 

core layer. In light of this, the contribution of the buffer and cladding layers is ignored, to 

a first approximation. 

 

3.3.4 Results 

To measure the 3PA coefficients of intermixed superlattice, the same system as 

used in TPA measurements was used except that the laser was configured to emit 150 fs 

pulses. This increased the peak pulse power by a factor of ten to ~8000 W which was 

required to induce a sufficient amount of 3PA to observe in the transmission data. The 

tenfold decrease in the pulse width resulted in pulse spectral widths of ten-times larger 

than those used in TPA measurements. Thus, the value of α3 at specific wavelengths is 

more difficult to pin down since any measurement will include the effect of all other 

wavelengths within the spectrum of the pulses. In order to maintain separation between 

measurements taken at different wavelengths, points were taken every 50 nm. 

The inverse transmission squared curve for 1550 nm TM polarized light is shown 

in Figure 3.9. At lower powers, the transmission through the waveguides increases, which 

was not expected. This phenomenon may be explained by a large number of defect states 

located at energies within the bandgap of the intermixed superlattice. These states 
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become increasingly filled as the power is increased and the transmission through the 

waveguide increases due to a decrease in available states. At some power level, all of the 

defect states are filled and the transmission peaks. After this point, decreases in output 

power will be due to linear scattering and nonlinear absorption. In the case of the shown 

curve, a straight line results at high powers indicating the action of 3PA. 

The value of α3 was calculated for intermixed superlattice waveguides using 

measurements of the slope of the inverse transmission squared curves m, calculated  

values, and Equation (3.17). Figure 3.10 shows the measured values for the TE and TM 

modes with wavelengths between 1500 and 1600 nm. In both cases, α

)5(
effA

3 is on the order of 

0.01 cm3/GW2, which on the same order of magnitude as that observed in bulk AlGaAs 

waveguides [20]. There is a polarization dependence with the TE mode having 3PA 

coefficients that are between three- and six-times larger than the TM mode.  

Errors in the 3PA values measured result from many of the same sources as the 

TPA values in as-grown superlattice. Uncertainty in  values introduces an error of up 

to ~12% in the TE mode and 8% in the TM mode. Errors in the measure pulse length 
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Figure 3.9: Measured inverse transmission squared curve for intermixed superlattice with TM 

polarized light at 1550 nm 
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Figure 3.10: Measured 3PA values for intermixed superlattice 

were estimated at 6%. The uncertainty in the measured α0 values resulted in a variation of 

α3 up to 23% in the TE mode and 57% in the TM mode. Thus, the total error in α3 is 51% 

for the TE mode and 81% for the TM mode in the worst cases. 

 

3.3.5 Comparison of 3PA to Other Sources of Optical Loss 

In order to compare 3PA to other loss mechanisms in intermixed and as-grown 

superlattice, it is necessary to evaluate their effects on the transmission of light through a 

waveguide. For linear loss in the absence of nonlinear absorption, the transmission is 

 

  (3.20) LeT 0α−=

 

where L is the propagation length. For TPA in the absence of linear loss, solving 

Equation (3.2) gives 
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where Iin is the input intensity. In the case of 3PA, Equation (3.15) can be solved with α0 

set to zero to yield 
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Each of these loss mechanisms was evaluated by calculating the length at which they lead 

to a loss of 3 dB at a wavelength of 1550 nm for the TE polarization. A peak input power 

of 100 W was chosen and the respective effective mode areas were used to calculate 

effective Iin for TPA and 3PA. Using these parameters 3 dB length for 3PA in intermixed 

waveguides is 2.8 m. For TPA in as-grown waveguides at 1545 nm, the 3 dB length was 

calculated as 3.7 mm in the TE mode, which is over three orders of magnitude smaller 

than 3PA in intermixed waveguides. By comparison, linear loss in intermixed 

waveguides requires only 1.9 mm to reach 3 dB regardless of the input power level. Thus, 

3PA in intermixed superlattice is weak enough such as not to limit optical power that 

would be required for the Kerr effect in nonlinear elements of a PIC. 

 

3.4 Re-emission from Nonlinear Absorption 

Nonlinear absorption causes electron-hole pairs to be generated in the 

superlattice. Many of these carriers eventually recombine radiatively and emit light at 

energies around the bandgap of the superlattice. This phenomenon provided an 

opportunity to verify the details of the bandgap in as-grown and intermixed material by 

measuring the spectrum of the re-emitted light when excited by the ultra-fast laser.  

The tip of a fiber optic cable was placed over the excited waveguide to collect the 

re-emitted light. An optical spectrometer was connected to other end of the cable to 

measure the spectrum. The laser system was configured to give pulse widths of ~150 fs 

and the wavelength was set to 1550 nm. This was to ensure that the intermixed sample 

had a sufficient amount of nonlinearly generated carriers to recombine such as to give 

enough light to measure reliably.  
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Figure 3.11: Re-emission spectra from recombination of carrier generated by nonlinear absorption. 

Figure 3.11 shows the re-emission spectra for as-grown and intermixed 

waveguides. For as-grown superlattice, the peak occurs at a wavelength of about 757 nm. 

In intermixed superlattice, the peak occurs at around 596 nm. In both cases, the measured 

spectra closely match the photoluminescence peaks detailed in Section 2.3. Also, in the 

intermixed superlattice, a small peak occurs at around 750 nm. This coincides with the 

PL peaks of as-grown superlattice and the unintended GaAs quantum wells found at the 

top and bottom of the superlattice. In either case, this indicates that there may be a small 

amount of the superlattice toward the bottom of the core layer that was not completely 

intermixed. 

 

3.5 Conclusions 

In this chapter, nonlinear absorption in as-grown and intermixed superlattice 

waveguides has been studied. As-grown waveguides were studied for TPA at 

wavelengths near 1550 nm which lie just below the half-bandgap of as-grown superlattice 

where band tail states can cause large amounts of TPA. The effect of the bulk AlGaAs 

buffer and cladding layers was not considered since their TPA coefficients were 

estimated to be nearly zero. The strength of TPA in as-grown superlattice is nearly four-
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times larger than in bulk Al0.18Ga0.82As, which is similar to the enhancement observed in 

GaAs/AlGaAs MQW structures. A large polarization dependence exists with the TE 

mode having α2 values that are near four-times larger than in the TM mode, which is 

similar to the polarization dependence observed in bulk AlGaAs. Intermixed waveguides 

were not studied for TPA since the spectral range studied is sufficiently distant from the 

half-bandgap of intermixed superlattice and since transmission trends characteristic of 

TPA were not observed in preliminary measurements of intermixed waveguides. 

Three-photon absorption was measured in intermixed superlattice waveguides 

using the inverse transmission squared method and 150 fs optical pulses. The value of α3 

was found to be on the same order of magnitude as bulk AlGaAs. A large polarization 

dependence was observed with the TE mode having α3 value between three- and six-

times larger than the TM mode. The limiting effects of 3PA in intermixed waveguides 

were found to be about three orders of magnitude smaller than both linear loss in 

intermixed waveguides and TPA in as-grown waveguides. 

Re-emitted light from nonlinear absorption was measured for as-grown and 

intermixed waveguides. In both cases, the spectral peaks of the re-emission coincided 

with PL peaks measured earlier. 
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Chapter 4  

Nonlinear Refraction by Self- and 
Cross-Phase Modulation 

 

 

 

4.1 Introduction 

To design practical all-optical switching devices based on the Kerr effect, it is 

necessary to know the value of the nonlinear refraction coefficients of the material being 

used. Near the half-bandgap resonance, it is also important to know how these 

coefficients change with wavelength and with polarization since nonlinear refraction can 

change drastically with either. However, measurement of these coefficients is 

problematic since direct measurements of changes in the index of refraction are difficult 

to achieve, especially in waveguide structures. Instead, indirect measurements of self-

phase modulation for a single beam and cross-phase modulation between two 

orthogonally polarized beams must be used. Modeling the behaviour of SPM and XPM is 

problematic since several other phenomena such as dispersion, group velocity mismatch, 

and nonlinear absorption all have direct effects on the nonlinear behaviour. However, 

with reliable measurement techniques and comprehensive modeling, accurate nonlinear 

refraction coefficients for SPM and XPM can be determined. 

This chapter deals with nonlinear refraction in GaAs/AlAs superlattice 

waveguides at wavelengths below the half-bandgap where non-resonant nonlinearities are 

dominant. Observations of SPM in as-grown and intermixed waveguides through 

measurements of spectral broadening are examined. Contributions of the AlGaAs buffer 
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and cladding layers of the waveguide structure are discussed and accounted for in the 

resulting nonlinear coefficients for the superlattice core layer. Measurements of XPM 

between orthogonal polarizations using a pump-probe technique and measurements of the 

resulting spectral broadening are looked at. For both SPM and XPM, numerical 

computation techniques are developed to accurately model the effects of nonlinear 

refraction and to extract the nonlinear coefficients. 

 

4.2 Self-Phase Modulation in As-Grown and Intermixed 

Superlattice 

4.2.1 Background Theory on Self-Phase Modulation and Spectral 
Broadening 

Instantaneous changes in the refractive index due to an intense electric field result 

from the non-resonant optical Kerr effect. In this case, the change in the index of 

refraction is caused by interactions with the bound electrons without transitions to the 

conduction band from the valence band. From Equation (1.2), the instantaneous index 

change due to the third-order nonlinearity can be expressed as 

 

 Inn 2=∆ . (4.1) 

 

As with nonlinear absorption, the non-uniform intensity distribution of the guided mode 

in a waveguide must be accounted for when calculating the optical intensity. Using the 

same formalism as with TPA, the index change can be modeled in more detail for a 

waveguide structure as [45] 
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where n2,(i) are the nonlinear refractive indexes of each material in the structure. This 

equation yields the same third-order effective areas as before, including the effective area 

of the waveguide as a whole. Thus, Equation (4.2) can be simplified as 
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where n2,eff is the effective nonlinear refraction coefficient for the waveguide.  

Using this definition, the effect of the nonlinear refractive index on an optical 

pulse can be modeled. Maxwell’s equations can be solved with the nonlinear portion of 

the polarization in Equation (1.1) treated as a perturbation and under the assumption of a 

slowly varying envelope to give a simple propagation equation expressed as [3] 
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where U(z, t) is the normalized pulse envelope, P0 is the initial peak power, and γ is the 

nonlinear propagation coefficient which is defined as 
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This equation is readily solved as 

 

 ( ) ( ) ( )[ ]tzjtUtzU NL ,exp,0, φ=  (4.6) 

 

where ( tzNL , )φ  is the nonlinear phase shift which is expressed as 
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and zeff is defined as 

 

 
( )[ ]
0

0exp1
α

α z
zeff

−−
=  (4.8) 

 

which accounts for the linear loss. The phase shift is dependent on the power of the pulse 

itself. Thus, this phenomenon is known as self-phase modulation. The maximum 

nonlinear phase shift occurs at the pulse center where the field is largest and can be 

expressed as 

 

 effzP0max γφ = . (4.9) 

 

As a result of the time dependence in the nonlinear phase shift, the instantaneous optical 

frequency shifts according to 

 

 ( ) ( ) ( )( ) eff
NL zPtU

tdt
tz

t 0
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,
γ

φ
δω

∂
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−=
∂

−= . (4.10) 

 

Thus, the pulse spectrum changes and generally becomes wider for a positive γ. This 

effect is known as SPM-induced spectral broadening. The direction of the frequency shift 

depends on which edge of the pulse is being acted on. As shown in Figure 4.1, on the 

rising edge of the pulse, the frequency change is negative causing a red shift. On the 

falling edge, a blue shift occurs. 

The shape of the broadened spectrum is predictable given the initial pulse shape. 

For a Gaussian pulse, the spectral pattern indicates the approximate amount of phase shift 

as is shown in Figure 4.2 [3]. The pattern where the phase shift is 1.5π is commonly used 

as a reference point. Here, two peaks are separated by a maximal amount of dip between 

them. Thus, using Equation (4.9), the value of the nonlinear refraction coefficient can be 

solved for as 
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Time Frequency 

Red Shift 

Blue Shift 

 
Figure 4.1: SPM-induced frequency shifts by the rising (top) and falling (bottom) edges of an optical 

pulse 

 

 
Figure 4.2: Spectral broadening patterns and associated phase shifts for a Gaussian pulse. Replicated 

from Ref. [3] 
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where P0,DP is the peak power at which the dual-peak pattern forms. 

Dispersion and nonlinear absorption in a material influence the amount of spectral 

broadening. Pulse broadening by GVD has the immediate consequence of reducing the 

peak power of a pulse as it propagates through a medium. As a result, less power is 

available to induce the Kerr effect and the amount of spectral broadening is reduced. 

Furthermore, spectral broadening will cause the pulse to broaden more quickly resulting 

in even less peak power [3]. Nonlinear absorption causes a reduction in the overall power 

available for the Kerr effect. Also, since the pulse intensity is different at various points 

along the pulse envelope, nonlinear absorption results in changes of the pulse shape 

which influences the pattern of spectral broadening. 

In order to accurately model the propagation of a pulse through a nonlinear 

medium, it is necessary to account for all the phenomena that can affect spectral 

broadening. Since Equation (4.4) only accounts for linear losses, the value of n2 

calculated by Equation (4.11) will be inaccurate when other effects are significant. A 

more comprehensive model leads to the Generalized Nonlinear Schrödinger Equation 

(GNLSE) which is expressed as [62] 

 

 ( )
( ) .02π2

6222
j

2
jj

22
(3)

2

3

3
3

2

2
2

2(5)

4
3

(3)

2
20

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

++

∂
∂

−
∂
∂

−+++
∂
∂

AA
t

jAA
A
n

t
Aj

t
AA

A

A
jA

A
A

A
z
A

eff

effeff

ωλ

ββααα

 (4.12) 

 

The terms involving α0, α2, and α3 account for linear and nonlinear absorption. GVD and 

third-order dispersion are described by the terms with β2 and β3. Third-order 

nonlinearities related to the Kerr effect are described by the last two terms. The first of 

these terms describes SPM. The second accounts for an effect known as self-steepening 

which becomes important at pulse lengths less than 1 ps. Unlike the simple propagation 
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model of Equation (4.4), the GNLSE does not have a simple analytical solution. Thus, it 

is necessary to solve the GNLSE numerically. 

 

4.2.2 Previous Studies of SPM in Semiconductors 

The Kerr effect was studied in bulk crystalline silicon by Dinu et al. by using the 

Z-scan technique and femtosecond pulses [54]. The value of n2 was measured to be 

0.45×10-13 cm2/W at 1540 nm and 0.26×10-13 cm2/W at 1270 nm, which is about two 

orders of magnitude larger than n2 in silica. Despite the use of wavelengths above the 

half-bandgap of silicon, free carriers generated by nonlinear absorption and thermal 

effects were deemed to have a negligible effect on nonlinear refraction. Further studies of 

silicon were carried out by Boyraz et al. on SPM-induced spectral broadening in silicon-

on-insulator (SOI) waveguides [63]. Measured output spectra for a 4 ps pulse with a 

center wavelength of around 1559 nm showed a spectral broadening factor of 2× for a 

peak pulse power of 110W. Using a numerical solution of a simplified GNLSE based on 

the split-step Fourier method [3], broadening factors as high as 5× were predicted for 

input powers 10× larger than those used in experiments. 

Theoretical studies on nonlinear refraction in zinc-blende semiconductors were 

undertaken by Hutchings and Wherrett [64]. Anisotropy in the nonlinear properties of 

GaAs and InSb for photon energies below the bandgap was found to be the result of 

interactions with higher conduction-band sets. This anisotropy was confirmed in 

experiments on the polarization dependence of nonlinear refraction in bulk AlGaAs 

waveguides carried out by Hutchings et al. [65]. Waveguides with a 1.0 µm-thick 

Al0.18Ga0.82As core layer, 4.0 µm-thick Al0.40Ga0.60As lower cladding, and a 1.5 µm-thick 

Al0.30Ga0.70As upper cladding were tested with 10-ps pulses at a wavelength of 1546 nm. 

It was determined using the dual-peak spectral pattern as a reference that n2 for the TE 

mode was ~1.3×10-13 cm2/W. To produce the same degree of spectral broadening in the 

TM mode, about 27% more transmitted power was required.  

The dispersion of the nonlinear refraction coefficients in bulk AlGaAs was 

studied at wavelengths just below the half-bandgap by Aitchison et al. [20]. The 

waveguide structure consisted of a 1.5 µm-thick Al0.18Ga0.82As core layer which was clad 
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on either side by Al0.24Ga0.76As. Nonlinear refraction coefficients were determined from 

observations of SPM-induced spectral broadening. At 1550 nm, n2 was ~1.50×10-13 

cm2/W in the TE mode and ~1.43×10-13 cm2/W in the TM mode. The polarization 

dependence was consistently between 5% and 10% across the studied spectral range. 

Studies on the spectral evolution of high power femtosecond pulses in bulk 

AlGaAs waveguides were carried out by Modotto et al. [62]. A 0.6 µm-thick core layer 

of Al0.20Ga0.80As was sandwiched between Al0.40Ga0.60As cladding layers to create the 

waveguiding structure. For wavelengths of around 1520 nm, the spectrum was found to 

broaden and shift toward shorter wavelengths with increasing power. Computer modeling 

of the GNLSE by the split-step Fourier method [3] found that the blue shift was caused 

by initial asymmetry in the input pulse shapes. 

Experiments on nonlinear refraction in GaAs/AlGaAs MQW waveguides were 

carried out by Yang et al. [58]. Measured n2 values for the TE mode were 1.5×10-13 

cm2/W to 3.5×10-13 cm2/W for wavelengths between 1480 nm and 1660 nm. In the TM 

mode, n2 was ~1.0×10-13 cm2/W for wavelengths longer than 1550 nm. Immediately 

below 1550 nm, the value of n2 increased rapidly to ~4.0×10-13 cm2/W at a wavelength of 

about 1500 nm. This peak in the nonlinear behaviour was attributed to exciton resonances 

in the quantum wells for wavelengths between 1490 nm and 1530 nm. 

The effect of QWI on the nonlinear coefficients of GaAs/AlGaAs MQW 

waveguide was examined by Hamilton et al. [66]. The MQW layer of the waveguides 

tested were made up of 78 periods of 2.8 nm-wide GaAs wells separated by 10.0 nm-

wide Al0.40Ga0.60As barriers. Patterned silica caps were used to create disordered regions 

by IFVD while gallium oxide covering other areas of the wafer suppressed the 

disordering process. Waveguides in non-disordered regions were measured to have n2 

values of 2.6×10-13 cm2/W for the TE mode and 3.3×10-13 cm2/W for the TM mode at a 

wavelength of 1550 nm. Disordered regions showed PL shifts of ~40 nm towards shorter 

wavelengths and measured nonlinear refraction coefficients were more than 60% reduced 

when compared to non-disordered regions. 
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4.2.3 Nonlinear Refraction in the Buffer and Cladding Layers 

In order to isolate the nonlinear refraction coefficient of the superlattice from the 

rest of the waveguide structure, it is necessary to find the contribution of the buffer and 

cladding layers to the overall nonlinear behaviour of the waveguides. The compositions 

used in these layers, Al0.56Ga0.44As and Al0.60Ga0.40As, have not been studied specifically 

in the past. By using available theoretical approaches and the scaling laws they yield, 

approximate n2 values for the bulk layers can be calculated. However, this approach is 

complicated by the fact that AlGaAs compositions with Al mole ratios greater than 0.45 

have indirect bandgaps. Since the scaling laws are based on the bandgap energy, it is 

necessary to evaluate the effect of the indirect bandgap of AlGaAs on nonlinear 

refraction. 

Theoretical treatment of nonlinear refraction in direct gap semiconductors was 

carried out by Sheik-Bahae et al. [12, 59]. Using a two-band model, the value of n2 was 

derived from the theoretical expression for TPA in Equation (3.13) and the Kramers- 

Krönig transformation: 
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where K' is a material-independent constant, n0 is the index of refraction, Ep is a nearly 

material-independent constant related to the Kane momentum, Eg is the direct bandgap 

energy, and G2 is a function describing the dispersion relative to the bandgap energy. 

This expression shows that n2 is proportional to Eg
-4. Thus, nonlinear refraction quickly 

becomes weaker with increasing bandgap energy. The dispersion trend of function G2 

was found to be [12] 
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where Θ(u) is the unit step function. 
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Using the scaling laws set out in Equation (4.13), n2 values for Al0.56Ga0.44As and 

Al0.60Ga0.40As were calculated using n2 values measured for Al0.18Ga0.82As [20]. The 

resulting values are shown in Figure 4.3 for the TE and TM modes between 1505 nm and 

1625 nm. The points shown were scaled from linearly interpolated values of measured 

data to obtain points needed for calculating the n2 of superlattice in Section 4.2.7. Scaled 

values were between 18% and 25% of the values for Al0.18Ga0.82As. In both polarizations, 

Al0.60Ga0.40As has n2 values that are only 9% smaller than the Al0.56Ga0.44As n2 values. 

These values show that the n2 of the buffer and cladding layers can contribute 

significantly to the overall nonlinear refraction of the waveguide. 

The effect of the indirect bandgap on nonlinear refraction was studied by Dinu 

[51]. By accounting for phonon interactions in TPA, the following expression for n2 was 

derived using the Kramers- Krönig transformation:  
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where C2 is a material dependent constant, c is the speed of light, Eig is the indirect 
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Figure 4.3: Spectral dependence of n2 for Al0.56Ga0.44As and Al0.60Ga0.40As scaled from measured 

values of Al0.18Ga0.82As 
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bandgap energy, and  represents frequency dependence. From the material 

parameters, C

indG2

2 can be calculated as 
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where ZA is the acoustic deformation potential, Eph is the phonon energy, is the 

phonon occupation number, ρ is the density, c

ΧKN

s is the speed of sound, Eig is the indirect 

bandgap energy, mc is the carrier effective mass for the conduction band, and mv is the 

carrier effective mass for the valence band. The plus/minus sign accounts for the 

emission/absorption of a phonon. The frequency dependence relative to the half-bandgap 

energy is 

 

 
( )

dx

E
xx

x
E

G

ig

ig

ind ∫
∞

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

0 8

4

2
211

2
ω

ω

h

h . (4.17) 

 

By substituting Equation (4.16) into Equation (4.15), the following expression results: 
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where the Eig has been pulled out of C2 to give the constant C2
'. The indirect bandgap 

yields the same dependence on the bandgap as does the direct bandgap with n2 being 

proportional to Eig
-4. However, the value of n2 depends greatly on the phonon-related 

parameters of the semiconductor such as ZA and Eph. Furthermore, the value of 
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ΧKN strongly depends on temperature. Thus, the scaling laws for indirect transitions are 

somewhat different than for direct transitions. 

The contribution of the indirect bandgap to the optical Kerr effect in 

Al0.56Ga0.44As was calculated using Dinu’s formulae to evaluate its significance. Table 

4.1 lists the parameters at room temperature for Al0.56Ga0.44As and Al0.60Ga0.40As that 

were used in the calculations. For wavelengths around 1550 nm, the value of n2 

calculated for the indirect bandgap was on the order of 0.001×10-13 cm2/W, which is over 

two-orders of magnitude smaller than the values calculated for the direct bandgap. 

Compared to the effect of the direct bandgap, the indirect bandgap contributes little to the 

Table 4.1: Parameters for calculation of nonlinear refraction constant for indirect bandgap of 

AlGaAs buffer and cladding layers 

 Al0.56Ga0.44As Al0.60Ga0.40As Notes 

ZA 6.028 eV 5.580 eV Source: [41] 

Eph 28 eV 28 eV Used longitudinal acoustic 

phonon energies for GaAs, 

Source [67]  

Eig 2.014 eV  2.026 eV Source: [41] 

ρ 4.429 g/cm3 4.365 g/cm3 Source: [29] 

ΧKN  0.4979 0.4979 Calculated using Equation (8) in 

Ref. [51] 

cs 5.93 × 105 cm/s 5.97 × 105 cm/s Used [111] LA sound velocity in 

Table 4.8 of Ref. [29] 

mc 0.41m0 0.41m0 Used GaAs transverse and 

longitudinal value for Χ-band 

minima in Table 9.4 of Ref. [29] 

and density-of-states average 

according to Ref. [51] 

mv 0.58m0 0.59m0 Linearly interpolated from HH 

data in Table 9.9 of Ref. [29] 

n0 3.089 3.070 Wavelength is 1550 nm, Source: 

[44] 
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overall nonlinear behaviour. Thus, phonon-assisted nonlinear refraction of the buffer and 

cladding layers can be ignored. 

 In order to include the contribution of the buffer and cladding layers to the total 

Kerr effect in the waveguides, the third-order effective area for these layers must be 

calculated. Since the difference in the n2 values between the buffer and cladding layers is 

small, both layers can be considered as a single material having a uniform nonlinearity. 

Thus, a single effective area that includes both the buffer and cladding layer can be 

calculated. These values are shown in Figure 4.4. While the  values are larger than 

the core effective areas, they are not large enough that the contribution of the bulk layers 

can be ignored. It is also necessary to calculate the effective area of the waveguide where 

the nonlinearity is assumed to be uniform across the whole structure. The value of , 

shown in Figure 4.5, were used when calculating the n

)3(
,cladeffA

)3(
,wgeffA

2,eff of the waveguide. Error in the 

shown values results from a ±50 nm uncertainty in the etch depth and a ±0.001 

uncertainty in the linear refractive index of superlattice. 
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Figure 4.4: Cladding third-order effective area for as-grown superlattice waveguides 
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Figure 4.5: Waveguide third-order effective area for as-grown superlattice waveguides. 

4.2.4 Theoretical Predictions for Superlattice 

As was discussed in Chapter 1, the third-order nonlinear behaviour of a material is 

related to third-order susceptibility tensor. For the single frequency case in zinc-blende 

semiconductors such as AlGaAs, the four independent, non-zero tensor elements are 

reduced to three. In the case of a superlattice, these tensor elements break down into eight 

[28]: 

 

  (4.19) 
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Of these, four are related to SPM ( ) while the rest are related to 

four-wave mixing and XPM. Nonlinear refraction coefficients can be calculated from the 

real part of the tensor element according to [28] 

)3()3()3()3( ,,, xxyyxyxyzzzzxxxx χχχχ
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where ε0 is the electric permittivity of free space, c is the speed of light, and n0 is the 

linear index of refraction. The effective third-order nonlinear susceptibility, , is  

for the TM polarization and 

)3(
effχ )3(

zzzzχ

( ) 22 )3()3()3(
xxyyxyxyxxxx χχχ ++  for the TE polarization. As a result 

of the break down of the tensor elements and the composition of the effective 

coefficients, SPM in as-grown superlattice was expected to be highly anisotropic [28]. 

Theoretical predictions of the nonlinear susceptibility coefficients in 14:14 

GaAs/AlAs superlattice were developed by Hutchings [28]. Using a 14 band k·p model 

to calculate the electronic band structure of superlattice [68], Hutchings calculated the 

eight independent non-zero tensor elements with the A·p perturbation method [69]. This 

method proved to be more powerful than other simpler techniques such as the effective 

mass approximation since it can account for band nonparabolicity, anisotropy, and 
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Figure 4.6: Theoretical n2 values for as-grown superlattice calculated from Ref. [28] 
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noncentrosymmetry which directly affect the nonlinear coefficients.  

For SPM, the value of n2 was calculated using Equation (4.20) with the predicted 

effective susceptibility coefficients for the TE and TM polarizations and are shown in 

Figure 4.6. In both cases, the nonlinear coefficients are on the same order of magnitude as 

bulk AlGaAs. However, the TM polarization has a significantly suppressed nonlinearity, 

which is between 30% and 40% that of the TE polarization. Hence, a large polarization 

dependence that decreases with increasing wavelength was predicted. This is the result of 

the lifting of the heavy-hole band energy over the light-hole band, and the breaking of the 

degeneracy in the nonlinear susceptibility due to asymmetry in the structure. However, n2 

was predicted to be smaller in superlattice by about 20-30% compared to bulk 

Al0.18Ga0.82As. Uncertainty in the shown values results from numerical error reported by 

the quadrature routine of the algorithm [28]. 

Nonlinear susceptibility coefficients were also predicted for intermixed 

superlattice with a diffusion length of 20 monolayers [28]. In this case, the superlattice 

reverts back into an average alloy of AlGaAs and the tensor elements become degenerate.  

This is illustrated in Figure 4.7 which shows the calculated n2 values for the TE and TM 
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Figure 4.7: Theoretical n2 values for intermixed superlattice calculated from Ref. [28] 
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modes which are related to the  and  tensor components respectively. Clearly, 

the difference between the two polarizations has become substantially reduced with the 

values being nearly the same. Furthermore, the resonance point has been shifted to a 

shorter wavelength. For wavelengths near 1550 nm, n

)3(
xxxxχ )3(

zzzzχ

2 is reduced to about one-sixth the 

value for the TE mode in as-grown superlattice. This shows that intermixing has 

effectively reduced the nonlinearity to the point where intermixed superlattice can 

considered as being linear. 

 

4.2.5 Experimental Methods 

Measurements of nonlinear refraction may be done by a number of methods that 

utilize at least one of the observable consequences of the optical Kerr effect. For instance, 

the Z-scan technique is based on the self-focusing effect and has been used to 

characterize nonlinear refraction in a number of materials [70]. However, this technique 

is only appropriate for large bulk materials. Since it is impractical to grow large epitaxial 

layers of bulk AlGaAs and superlattice, measurements of the Kerr effect in these 

materials requires a different approach. Another method is to measure the spectral 

broadening induced by SPM [3]. Since the spectrum changes in a predictable manner, the 

value of n2 can be extracted by matching data to modeled spectral changes calculated by 

a computer. 

Measurements of SPM-induced spectral broadening in superlattice waveguides 

was carried out using the experimental setup described in Section 3.2.3. The laser power 

was stepped from low power to high power and the resulting output spectrum from the 

excited waveguide was measured by the optical spectrum analyzer at each step. For as-

grown superlattice waveguides, the laser was configured to give 1.5 ps to 2.5 ps pulses. 

Spectral widths of the pulses were between 2.0 nm to 4.0 nm, which gave good spectral 

resolution.  
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4.2.6 Computer Simulation by the Split-step Fourier Method 

In order to accurately model the effects of nonlinear refraction, it is necessary to 

account for all of the parameters that affect spectral broadening. This includes the 

material parameters such as GVD, linear loss, TPA, and 3PA. Pulse characteristics such 

as temporal shape and chirp will also affect the spectral broadening pattern. The GNLSE 

accounts for all of relevant material parameters and pulse parameters. However, this 

equation does not readily yield an analytical solution and a numerical solution is required. 

The split-step Fourier method is a simple and fast technique for solving the 

propagation equation [3]. In this method, the GNLSE of Equation (4.12) is divided into a 

linear term and a nonlinear term according to 
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where D̂  is a differential operator accounting for dispersion and loss which is defined as 
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 and  accounts for nonlinear effects and linear loss according to N̂
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Over a small propagation distance, ∆z, the dispersion and nonlinearity can be thought of 

as acting independently of each other. Thus, the solution to the Equation (4.21) for 

propagation over an interval ∆z can be approximated as 

 

 ( ) ( ) ( ) ( )tzANzDztzzA ,ˆexpˆexp, ∆∆=∆+ . (4.24) 
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Calculation of the dispersion term can be carried out in the frequency domain using the 

Fourier transform according to 

 

 ( ) ( ) ( )( ){ } ( )tzBFjDzFtzBDz ,ˆexp,ˆexp 1 ω∆=∆ −  (4.25) 

 

where F is the Fourier transform operator and B is the intermediary pulse envelope being 

acted on. This method simplifies the calculation by replacing the time differential 

operators with jω thus yielding a scalar equation that is fast and simple to evaluate. By 

choosing an appropriately sized ∆z, the propagation of a pulse through a nonlinear 

material can be simulated using a beam propagation method (BPM) on a computer within 

a reasonable amount of time. 

The optical pulse envelope A can be approximated as a super-Gaussian function 

of the form [3] 
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where t0 is the pulse half-width at the 1/e-intensity point, C is the chirp parameter, and m 

is the super-Gaussian parameter. The FWHM of the pulse is related to t0 by [3] 

 

 ( ) 02ln2 ttFWHM = . (4.27) 

 

For C<0, the pulse has a linear down-chirp, and for C>0, the pulse has a linear up-chirp. 

The m parameter controls the shape of the pulse. For m>1, the pulse edges become 

steeper and the pulse peak flattens out. Both chirp and m result in a non-transform-limited 

pulse. This may be used to explain initial spectral widths of pulses used in experiments. 

Furthermore, these parameters affect the amount and pattern of spectral broadening 

output from the computer simulation. By manipulating the parameters of the pulse and 

the material, the simulation results can be made to closely match the data measured in 

experiments. 
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A BPM simulator was developed was developed in MATLAB to numerically 

solve the GNLSE based on the split-step Fourier method based on code originally 

developed by Modotto in Ref. [62] (see Appendix B). Fast-Fourier transforms (FFT) 

were used to transform the data back and forth from the frequency domain. With 

appropriate parameters, simulations were completed within a reasonable time of about 

one minute on a 2.4 GHz Intel Pentium 4 processor for a single propagation through a 

length of 1.2 cm. The simulator was run multiple times with increasing input pulse power 

in order to replicate the spectral evolution data measured in laboratory experiments. With 

20-30 power levels, complete simulations took between 20-30 minutes to run. 

 

4.2.7 Results for As-grown Superlattice 

SPM-induced spectral broadening was measured for both the TE and TM modes 

in as-grown superlattice waveguides. Figure 4.8 depicts the measured spectrum of output 

pulses with increasing input power at a wavelength of 1545 nm for the TE and TM 

polarizations. The spectral pattern indicates phase shifts of up to 2π in the TE mode at 

high powers. A dual-peak pattern is found in the middle of the plot. The dotted lines 

indicate the points where the dip in the middle of the spectrum has reached a minimum. 

For each wavelength examined in these experiments, this point was used as a reference 

for determining the value of n2 for that wavelength. The polarization dependence of 

spectral broadening is evident from the observed patterns. For the TE mode, the dual-

peak point occurs at a peak power of ~58 W. This same point occurs in the TM mode at a 

power of ~240 W, which is nearly four-times greater. A small amount of asymmetry is 

present in the spectral patterns and is likely due to asymmetry in the temporal profile of 

the input pulses.  

Values for n2 were initially calculated using Equation (4.20) and the power level 

at which the dual-peak spectral pattern occurs. These values are shown in Figure 4.9 for 

the TE and TM polarizations. The order of magnitude matches predictions, as does the 

polarization dependence. However, since the simple model does not account for 

dispersion, nonlinear absorption, and the nonlinear contribution of the bulk AlGaAs 

layers, n2 for as-grown superlattice is significantly underestimated.  

 79



Peak Power (W)

W
av

el
en

gt
h 

(n
m

)

20 40 60 80 1001530

1535

1540

1545

1550

1555

1560

 

Peak Power (W)

W
av

el
en

gt
h 

(n
m

)

50 100 150 200 2501530

1535

1540

1545

1550

1555

1560

 

Figure 4.8: Spectral broadening pattern with increasing input power at 1545 nm in as-grown 

superlattice waveguides for the TE mode (top) and TM mode (bottom) 
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Figure 4.9: Nonlinear refraction coefficients for as-grown superlattice calculated from measured 

data using the simple modeling method. Values shown underestimate the value of n2 since dispersion 

and nonlinear absorption are not accounted for. Thus, n2 values from the more comprehensive model 

should be used instead. 

Subsequent modeling of spectral broadening was carried out with the use of the 

GNLSE BPM simulator. Three-photon absorption was previously measured to be nearly 

nonexistent in as-grown superlattice waveguides, and thus α3 was set to zero. Third-order  

dispersion, β3, was also set to zero and the self-steepening effect was not accounted for 

since these phenomena are insignificant for pulse widths greater than 1 ps [3]. Otherwise, 

all other coefficients in the GNLSE were sourced from values reported in Chapter 2 and 

Chapter 3.  

Effective nonlinear refraction coefficients, n2,eff, for as-grown superlattice 

waveguides were extracted from the experimental data by varying the value of n2 in the 

simulator until the dual-peak pattern occurred for the same peak power. Figure 4.10 

depicts the evolution of the output spectrum from the simulator for the TE mode at 1545 

nm. The simulation results match well to the measured data. Patterns such as the dual-

peak point and the single-peak break up point occur at approximately the same power. At 

each wavelength tested, pulse-widths used in the simulator were varied within the error 

range of the measured values along with the chirp and the super-Gaussian parameter m to 

match the initial spectrum of the input pulses. A negative chirp coefficient, C, of between 
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-1.2 and -1.0 accounted for the formation of spectral side lobes and for the narrow power 

range over which the spectrum breaks up from a single-peak to a dual-peak. The value of 

the super-Gaussian parameter m was set between 1.2 and 1.5 to account for the spectral 

patterns observed at higher input powers. Values of the nonlinear refraction coefficients 

for the superlattice core layer itself, n2,SL,  were calculated using the matched n2,eff 

obtained from the simulator and Equation (4.3) with the calculated values for the 

effective areas and nonlinear refraction coefficients of the bulk layers. 

Nonlinear refraction coefficients for the superlattice core evaluated at 

wavelengths between 1505 nm and 1625 nm are shown in Figure 4.11. Values were on 

the order of 10-13 cm2/W, which is on the same order as values in bulk Al0.18Ga0.82As 

[20]. However, nonlinear refraction coefficients in the superlattice show an enhancement 

over bulk AlGaAs with values being 67% to 200% larger in the TE mode and 19% to 

77% larger in the TM mode. This does not agree with theoretical predictions for 

superlattice in which n2 was calculated to be less than in bulk AlGaAs [28]. The TE mode 

shows a rapidly increasing n2 as the half-bandgap is approached, while the TM mode has 
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Figure 4.10: Simulated spectral broadening in an as-grown superlattice waveguide for the TE mode 

at 1545 nm 
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a relatively flat curve. This indicates that the TE and TM modes have different half-

bandgap resonance points. As a result, a large polarization dependence in n2 occurs near 

the half-bandgap where the TE mode exhibits n2 values that are two-times larger than the 

TM mode. This observed polarization dependence does agree with predictions from 

Hutchings [28]. By comparison, bulk AlGaAs only shows a polarization dependence of 

10% at most. The enhancement in the polarization dependence and the strength of the 

Kerr effect is similar to that seen in GaAs/AlGaAs MQW waveguides [49, 58]. At longer 

wavelengths, the polarization dependence in superlattice is reduced with TE and TM 

values becoming nearly the same beyond 1605 nm.  

Uncertainty in the measured values results from many sources listed in Table 4.2. 

Error in the third-order core effective area was up to 14% in the TE mode and 9% in the 

TM mode. Linear loss coefficients had errors of up to 16% that contributed less than 1% 

error in the value of n2. Errors of 6% in the autocorrelation measurements of the pulse 

width added an error of the same amount to the nonlinear coefficients. The effective 

index of refraction introduced errors that were less than 1% and thus were ignored. 

Uncertainty in the scaled values of n2 for the buffer and cladding layers was 12%. In 
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Figure 4.11: Measured nonlinear refraction coefficients for SPM in as-grown superlattice produced 

by numerical solutions to the GNLSE 
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Table 4.2: Sources of error in n2 for as-grown superlattice 

Error Source TE TM 
)3(

effA  14% 9% 

α0 <1% <1% 

t0 6% 6% 

n0 <1% <1% 

Buffer/cladding n2 12% 12% 

TOTAL 32% 27% 

total, the error in the measured n2 was at most 32% in the TE mode and 27% in the TM 

mode. 

 

4.2.8 Results for Intermixed Superlattice 

Preliminary experiments with intermixed superlattice waveguides were carried 

out with the laser system in picosecond mode. However, very little spectral broadening 

was observed at the waveguide output. This result was due to higher linear losses in the 

waveguides that limited the amount of power available to induce the Kerr effect. 

Furthermore, the short length of the sample reduced the interaction length over which 

SPM could take place.  

In subsequent experiments, the laser was configured into femtosecond mode. This 

gave enough peak power to produce an observable amount of spectral broadening 

however at the expense of spectral resolution. The wavelength was swept from 1400 nm 

to 1600 nm at intervals of 50 nm. However, beyond 1450 nm, the collected data did not 

clearly show discernable spectral broadening patterns. It is possible that other effects 

such as high order dispersion and forms of nonlinear absorption other that 3PA and TPA 

were modifying the spectral evolution in ways that are difficult to predict.  

The data at 1450 nm was decent for both polarizations and the simulator 

reasonably replicated the observed spectral broadening patterns. The intermixed core 

layer was assumed to have a similar nonlinearity to the buffer and cladding layers 

because of the similarity in the bandgap energy. This allowed the use of waveguide 

effective areas which were calculated as 7.84 µm2 for the TE mode and 8.11 µm2 for the 
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Table 4.3: Sources of error in n2 for intermixed superlattice 

Error Source TE TM 
)3(

effA  12% 8% 

α0 32% 85% 

t0 6% 6% 

Matched n2 3% 5% 

TOTAL 53% 104% 

TM mode at 1450 nm. Measured values of 3PA were included in the simulations 

resulting in power limiting at large powers. From the matched spectral broadening 

simulations, the TE mode had an n2 of 0.42 cm2/W and the TM mode had an n2 of 0.205 

cm2/W. This is nearly an order of magnitude smaller than the values for as-grown 

superlattice at longer wavelengths. Since the value of n2 should become smaller at longer 

wavelengths, intermixing the superlattice reduced the nonlinearity of the material. Thus, 

relative to as-grown material, intermixed superlattice can be considered as being linear. 

The error in the measured values at 1450 nm was large because of the high linear 

loss coefficients. For the TE mode, error due to the linear loss was estimated to be about 

32%. For the TM mode, this error was much higher at about 85%. Errors in the effective 

areas were 8% in the TM mode and 12% in the TE mode. Uncertainty in the measured 

pulse width was 6%. Variation in the matched value of n2 was 5% in the TM mode and 

3% in the TE mode. Total errors were 104% for TM and 53% for TE, as shown in Table 

4.3.  

 

4.3 Cross-phase Modulation in As-grown Superlattice 

4.3.1 Theory 

Two orthogonally-polarized beams of light co-propagating through a nonlinear 

medium can interact by the Kerr effect. Effectively, each beam experiences a change in 

the refractive index induced by the other according to 

 

 TMTMXTE Inn ,2=∆    (4.28) 

 85



 TETEXTM Inn ,2=∆  (4.29) 

 

where nX2,TE and nX2,TM are the cross-Kerr coefficients for the TE and TM polarizations 

respectively. As with other nonlinear effects in a waveguide, the total change in the 

refractive index due to XPM is the sum of the contributions from each material in the 

structure. Furthermore, the total phase change in the each polarization will be the sum of 

the phase changes originating from both SPM and XPM. For a pulse, the phase change 

varies with time and causes a shift in the optical frequency. Thus, XPM causes spectral 

broadening in the same way SPM does. The pattern of the spectral changes is susceptible 

to the same phenomena such as pulse shape, chirp, dispersion, and nonlinear absorption. 

The phase changes and spectral broadening caused by XPM between two co-

propagating polarizations will be strongly affected by birefringence in the medium or 

waveguide. Birefringence causes each polarization to propagate at a different speed. In 

the case of a pulse, each polarization will have a different group velocity. Thus, as the 

pulses move through the waveguide, one of the pulses will begin to lag the other as is 

shown in Figure 4.12. In this case, the peaks of the pulses are no longer coincidental. The 

leading pulse acts mostly on the head of the trailing pulse and the trailing pulse acts 

mostly on the tail of the leading pulse. Thus, the leading pulse will cause a blue shift in 

the trailing pulse and the trailing pulse will cause a red shift in the leading pulse. As a 

result, group velocity mismatch between the pulses causes the spectra of each to broaden 

 

Time Frequency 

Red Shift Blue Shift 

Leading Spectrum Trailing Spectrum 

Frequency 

Leading Pulse 

Trailing Pulse 

 
Figure 4.12: XPM-induced frequency shifts on co-propagating pulses shifted from each other in time 

by group velocity mismatch 
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asymmetrically. Initial pulse chirp can either enhance or suppress this asymmetry 

depending on whether it is negative or positive. 

Accurate modeling of the interaction between two co-propagating pulses requires 

inclusion group velocity in addition to the parameters that affect SPM. The GNLSE of 

Equation (4.12) can be extended to give a pair of coupled equations expressed as [3, 53] 
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 (4.31) 

 

where the subscripts “e” and “m” refer to variables and coefficients related to the TE and 

TM mode respectively. Third-order dispersion, 3PA, and the self-steepening effect were 

not included in these equations for simplicity. Four-wave mixing terms have also been 

omitted under the assumption that the phase matching does not occur between the 

polarizations due to birefringence [3]. The group velocity is included in the terms 

involving vg,e and vg,m. XPM is accounted for in the last terms of each equation. Note that 

these terms involve the intensity of the other field, and hence the reason for the 

appearance of the  value for the orthogonal polarization. In the past literature, the 

strength of XPM was expressed as in the ratio of XPM-to-SPM [3, 53]. Here, separate 

nonlinear coefficients for XPM and SPM have been used. Thus, that ratio is defined as 

(XPM/SPM)

(3)
effA

e=n2,e/nX2,e for the TE polarization and (XPM/SPM)m=n2,m/nX2,m for the TM 

polarization. 
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4.3.2 Previous Studies of XPM in Semiconductors 

Very few studies have been carried out to characterize XPM between 

polarizations in semiconductor materials. However, the few that have been done are 

relevant to the material examined in this thesis. XPM was studied in bulk Al0.18Ga0.82As 

waveguides by Aitchison et al. [20]. By numerically fitting spectral broadening 

measurements of the probe beam, the ratio SPM-to-XPM was determined to be about 

0.94. This ratio remained nearly the same across the studied spectrum just below the half-

bandgap. Also, no consistent polarization dependence of this ratio was observed. A study 

of the XPM-to-SPM ratio in GaAs/AlGaAs MQW waveguides was carried out by 

Villeneuve et al. [71]. Waveguides consisted of a MQW core layer with 3 nm-thick GaAs 

wells separated by 20 nm-thick AlGaAs barriers. At a wavelength of 1555 nm, a TM 

polarized pump was found to give a ratio of unity. However, a TE polarized pump gave a 

ratio of 0.5. This polarization dependence was attributed to exciton interactions that affect 

the TM mode and not the TE mode. 

 

4.3.3 Theoretical Predictions for Superlattice 

The break down of symmetry in superlattice leads to differences in the nonlinear 

susceptibility tensor elements related to XPM. Of the eight independent, non-zero tensor 

elements of the third-order nonlinear susceptibility, two are related to XPM:  for the 

TE polarization, and  for the TM polarization. Theoretical values for these tensor 

elements related to XPM in superlattice were calculated by Hutchings [28]. Using 

Equation (4.20) with an additional factor of 2 that results in the derivation of the 

propagation equations [3, 28], the value of n

)3(
xzxzχ

)3(
zxzxχ

X2 was calculated for the TE and TM modes. 

As Figure 4.13 shows, there is a polarization dependence with the TE mode having nX2 

values that are between 38% and 73% of the value for the TM mode. The predicted ratio 

of XPM/SPM was also calculated using theoretical n2 values discussed in Section 4.2.4 

and is shown in Figure 4.14. In the TE polarization, the ratio is about 0.79 ± 0.06 while in 

the TM polarization, XPM/SPM is about 1.35 ± 0.53. 
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Figure 4.13: Theoretical nX2 values for as-grown superlattice calculated from Ref. [28] 
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Figure 4.14: Theoretical XPM/SPM ratios for as-grown superlattice calculated from Ref. [28] 
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4.3.4 Experimental Methods 

Measurement of XPM was carried out by using the same experimental setup as 

SPM experiments with the laser set in picosecond mode. The half-waveplate located just 

before the end-fire rig was set to give a mixed TE/TM polarization such that one of the 

composing polarizations was a strong pump signal and the other polarization was a weak 

probe signal. In all experiments, the probe signal power was set to be no more than 7% of 

the pump to limit the amount of SPM in the probe. A polarizing beam cube was added 

just after the output objective of the end-fire rig to isolate the probe polarization before 

detection at the output power meter and the OSA. The output spectrum of the probe was 

observed at increasing input pump power levels. 

The GNLSE BPM code was modified to simulate the propagation of two beams 

with XPM. To maintain a consistent time reference point of zero, Equations (4.30) and 

(4.31) were modified as [3] 
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where the subscripts “pm” and “pb” denote variables and coefficients related to the pump 

and probe polarizations respectively, and d is the group velocity mismatch parameter 

which is defined as 
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Thus, the pump was held at a time of zero while the probe was allowed to move past the 

probe in time. The MATLAB code of the modified BPM simulator is detailed in 

Appendix B. 

 

4.3.5 Measured Results 

Spectral broadening induced by XPM was measured for the TM pump → TE 

probe interaction and the TE pump → TM probe interaction. The measured spectral 

evolution of the probe with input pump power is shown in Figure 4.15 for the TM pump 

→ TE probe interaction at 1545 nm. A significant asymmetry in the spectrum is clear at 

large powers, which indicates the effect of a group velocity mismatch. Most of the power 

ended up shifting to shorter wavelengths and the entire spectrum was gradually blue 

shifting. This indicates that the TM pump was leading the TE probe, which was expected 

since the group velocity of the TM mode was calculated to be higher than the group 

velocity of the TE mode. 
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Figure 4.15: Measured XPM-induced spectral broadening on a TE probe by a TM pump at a 

wavelength of 1545 nm 
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The XPM-induced spectral broadening was modeled using the modified GNLSE 

BPM simulator. The group velocity mismatch parameter, d, was obtained from group 

velocity values calculated in Section 2.5.3. To obtain good matches to the observed 

asymmetry, d was varied within 10% of the calculated value. The chirp values used 

varied between -0.4 and 0.3, and the super-Gaussian parameter varied between 1.0 and 

1.2. The beat length between the two polarizations was shown in Section 2.5.3 to be 

much less than the propagation length and thus four-wave mixing is negligble because of 

the large resulting phase mismatch [3]. Simulated spectral broadening of a 1545 nm TE 

probe is shown in Figure 4.16 and matches well with experimental data. Furthermore, the 

simulation confirms that group velocity mismatch is the dominant mechanism for causing 

asymmetric spectral broadening. 

As with SPM, the simulator produces effective nX2 values for the waveguide as a 

whole. In order to extract the nX2 values for the superlattice core, it was necessary to 

account for the effect of the cladding layers. Since the XPM/SPM ratio for bulk AlGaAs 

was found to be unity [20], n2 values for Al0.56Ga0.44As calculated in Section 4.2.3 were 
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Figure 4.16: Simulated XPM-induced spectral broadening of TE probe acted on by TM pump for as-

grown superlattice at 1545 nm 
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used as nX2 values for the buffer and cladding layers. Thus, by using Equation (4.3), the 

values for nX2,SL were calculated. As shown in Figure 4.17, the TE pump shows an 

increasing value of nX2 as the wavelength is decreased toward the half-bandgap while the 

value of nX2 for the TM pump remains somewhat flat. The two curves cross at around 

1545 nm with XPM being larger for the TE pump at shorter wavelengths and larger for 

the TM pump at longer wavelengths. These results do not agree with the theoretical 

values for nX2 which were predicted to be consistently high in the TM pump case. 

However, note that the error bars do overlap on some of the points. The uncertainty in the 

values shown come from the same sources and has the same magnitudes as those used for 

SPM n2 values, except that an additional error of up to 10% has been added due to an 

increased uncertainty in the match between simulation results and measured data. 

The ratio of XPM to SPM was calculated using the measured nX2 values of Figure 

4.17 and the measured values of n2 from Section 4.2.7. As shown in Figure 4.18, the TM 

mode has a consistently higher ratio than the TE mode. This general trend matches the 

predicted ratios and previous studies on GaAs/AlGaAs MQW waveguides [71]. 

However, the ratios for both modes are lower than expected and both below unity. For  
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Figure 4.17: Measured nonlinear refraction coefficients for XPM in as-grown superlattice 
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Figure 4.18: Measured XPM/SPM ratios for as-grown superlattice 

the TE mode, XPM/SPM is about 0.42 ± 0.08 while the TM mode has a ratio of about 

0.71 ± 0.19. Compared to MQWs, the TE mode shows a similar ratio of near 0.50, but the 

TM mode falls far below the ratio of 1.0 previously observed. Error bars shown account 

for the error of up to 10% in value of nX2 when obtaining matches between simulations 

and experiments. 

 

4.4 Conclusions 

This chapter examined nonlinear refraction by SPM and XPM in as-grown and 

intermixed superlattice waveguides. Spectral broadening was found to be affected by 

pulse shape, pulse chirp, dispersion, and nonlinear absorption. Calculations of the 

nonlinear refraction coefficients for bulk AlGaAs using scaling laws revealed that the 

buffer and cladding layers contribute significantly to nonlinear refraction in the 

waveguide and must be accounted for when calculating n2 for the superlattice core. The 

contribution of the indirect bandgap of the bulk AlGaAs layers to nonlinear refraction 

was calculated to be more than two-orders of magnitude smaller than the direct gap 

contribution and was thus ignored. Simple models of the propagation of a pulse in a 
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nonlinear medium were found to be inaccurate and thus a more comprehensive model 

involving the GNLSE was required. Solving the GNLSE was done by computer BPM 

simulations that employed the split-step Fourier method. Experimental data was matched 

to the computer simulations to yield more accurate n2 values. In as-grown superlattice, n2 

was found to be polarization dependent with the TE mode having larger coefficients than 

the TM mode at wavelengths close to the half-bandgap, which agreed with the predicted 

anisotropy. Nonlinear refraction was also found to be enhanced over bulk AlGaAs, which 

is similar to previous results in MQW waveguides. The rapid increase of the TE mode 

coefficients as the half-bandgap was approached and the relative flatness of the TM mode 

curve indicate a difference in the resonance points for the TE and TM modes. The large 

values for n2 indicate that superlattice has sufficient nonlinearity to realize practical 

devices. Measurements of intermixed superlattice revealed a reduction in n2 of over one-

order of magnitude relative to as-grown superlattice, thus showing that intermixing 

suppresses the nonlinear behaviour. 

XPM in as-grown superlattice waveguides was examined theoretically and 

experimentally. Group velocity mismatch has a large impact on XPM-induced spectral 

broadening and thus it was necessary to modify the GNLSE and the BPM simulator to 

account for it. Experiments employed a pump-probe setup in which a strong pump on one 

polarization acted on a weak probe on the other polarization. Resulting nX2 values showed 

that XPM increases for the TE mode as the half-bandgap is approached while the TM 

mode remains somewhat featureless. XPM-to-SPM ratios were larger in the TM mode, 

which agrees with predictions. The ratio for the TE mode agreed with previous studies of 

MQW waveguides. 
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Chapter 5  

Applications of Superlattice to 
Nonlinear Optical Signal 
Processing Devices 

 

 

 

5.1 Introduction 

One of the applications of nonlinear optics is in creating all-optical signal 

processing devices. The Kerr effect enables several phenomena such as self-phase 

modulation and cross-phase modulation that create phase changes in optical signals to 

allow optical switching. However, nonlinear absorption has a negative impact on these 

effects and must be accounted for when designing devices. Quantum well intermixing 

may add benefits to device design and its application to all-optical switching should be 

explored. 

In this chapter, the application of superlattice waveguides to all-optical signal 

processing is examined. A figure of merit is calculated to evaluate the effect of TPA on 

the optical Kerr effect for some types of all-optical devices. The power requirements to 

cause switching in a nonlinear directional coupler (NLDC) are discussed for superlattice 

and other semiconductors. A design for a nonlinear Mach-Zehnder interferometer 

(NLMZI) is examined and the possible benefits of using superlattice for this device are 

discussed. 
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5.2 Figure of Merit 

To design practical all-optical switching devices based on the Kerr effect, it is 

necessary to determine the amount of phase shift that can be achieved in a material. This 

will depend mostly on the strength of nonlinear refraction, the amount of power that can 

be delivered to the device, and the level of optical confinement in the waveguide. 

However, losses in a waveguide limit the effectiveness of the Kerr effect by reducing the 

power available to induce phase changes. Thus, it is necessary to account for linear and 

nonlinear loss when evaluating a nonlinear material. 

In the case where linear losses and 3PA are low, TPA will be the dominate loss 

mechanism at the large power levels required to gain large phase shifts by nonlinear 

refraction. A simple figure of merit (FOM) was developed by Mizrahi et al. to weigh the 

effects of TPA on nonlinear refraction [10]: 

 

 
2

22
n

T λα
= . (5.1) 

 

In general, lower values of T are desirable to give the greatest amount of phase shift 

without being limited by TPA. The larger the phase shift required, the lower T must be to 

realize a practical device. 

The value of T was calculated for as-grown superlattice using Equation (5.1), the 

value of α2 from Section 3.2.6, and the measured n2 from Section 4.2.7. As shown in 

Figure 5.1, the FOM is different for each polarization with the TE mode tending to have a 

larger value of T than the TM mode. At wavelength of 1545 nm and 1565 nm, T is nearly 

the same for both polarizations, which indicates that these are the most optimal 

wavelengths to work at for a polarization independent device. Otherwise, the most 

optimal device operation can be realized by using the TM mode at shorter wavelengths. 

In this case, a device operating at these wavelengths would be very polarization 

dependent with the TE mode having an FOM that is 64% larger than the TM mode. 

To evaluate superlattice as a nonlinear material relative to other materials, the 

FOM for other semiconductors was calculated using published values for n2 and α2. The 

listings in Table 5.1 show data for wavelengths near 1550 nm. Bulk AlGaAs clearly has  

 97



1500 1520 1540 1560 1580 1600 1620 1640
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FO
M

Wavelength (nm)

 TE
 TM

 
Figure 5.1: TPA Figure of merit for as-grown superlattice 

Table 5.1: Figures of merit T in various semiconductors for TPA-dominated loss 

  λ  

(nm) 

n2  

(×10-13 cm2/W) 

α2
  

(cm/GW) 

T Source 

TE 3.24 1.94 1.8 GaAs/AlAs 

Superlattice TM 
1545 

1.84 0.94 1.6 
 

TE 1.50 0.1 0.2 Bulk 

Al0.18Ga0.82As TM 
1556 

1.43 ~0 ~0 
[20] 

TE ~2.8 5.5 6.1 GaAs/AlGaAs 

MQW TM 
~1550 

~1.6 ~1.6 3.1 
[58] 

Bulk GaAs  1540 1.59 10.2 19.8 [54] 

c-Si  1540 0.45 0.79 5.4 [54] 

the best figure of merit with values that are much less than one. Superlattice is much 

higher with the value of T being about nine-times larger than AlGaAs in the TE mode. 

However, crystalline silicon, GaAs, and GaAs/AlGaAs MQWs all have worse figures of 

merit than either superlattice or bulk AlGaAs. For MQWs, this is due in part to the 

exciton resonances that raise the amount of TPA disproportionately to n2. In the case of 
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silicon and GaAs, wavelengths around 1550 nm fall above the half-bandgap where TPA 

is large. Thus, compared to other semiconductors, superlattice does well as a nonlinear 

material. 

 

5.3 Nonlinear Directional Coupler 

The directional coupler is a commonly used device in various applications. As 

shown in Figure 5.2, it consists of a pair of waveguides that are brought close together 

[72]. In this coupling region, the evanescent fields of the waveguide modes overlap. Thus 

over some distance, the light in one waveguide will couple to the other. In the case that 

light enters at the point IN, some percentage of the light will exit at the CROSS output 

while the rest of the light leaves at the BAR port. The ratio of CROSS-to-BAR power 

depends on the length of the coupling region and on the propagation constants of each 

waveguide. In a half-beat directional coupler, the length of the coupling region is such 

that all of the power entering the IN port couples to the other waveguide and leaves at the 

CROSS port. 

The behaviour of a directional coupler changes as a function of intensity if the 

material used is sufficiently nonlinear. At large input powers, the Kerr effect causes a 

change in the effective refractive index of the waveguide in which the light is 

propagating. This leads to a change in the propagation constant and a change in the 

amount of light that couples to the other waveguide. At some power level, no power will 

couple and all of the light exits through the BAR port instead of the CROSS port. Thus, 

this device switches light to either the CROSS port or the BAR port depending on the 

input intensity. Such a device is known as a nonlinear directional coupler [73]. NLDCs 

 
Figure 5.2: Schematic of a directional coupler 
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have already been implemented in bulk AlGaAs [74] and in GaAs/AlGaAs MQW 

waveguides [75].  

Nonlinear absorption will significantly affect behaviour and performance of an 

NLDC. The effect of TPA was studied in detail by DeLong et al. [76]. The power at 

which the power split in a half-beat NLDC is 50:50 was defined as the critical power 
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where k0 is the free-space propagation constant and L is the coupler length. By using the 

figure of merit definition of Equation (5.1), Figure 5.3 shows the effect of TPA on the 

switching characteristics of a NLDC. The input power is shown relative to the critical 

power. In the case where TPA is not present (T=0), almost all of the power exits at the 

BAR port for a power level just above PC. However, as the figure of merit increases, the 

amount of power required to cause switching increases. At T=4, the NLDC no longer 

operates effectively as a switch since the largest achievable switching fraction is <0.9 

which requires more than three-times more power than PC. 

By using the figures of merit calculated in Section 5.2, the usefulness of 

superlattice as a material for creating NLDCs can be compared to other nonlinear 

materials for wavelengths near 1550 nm. Shown in Figure 5.4 are the necessary powers 

required to reach the maximum switching ratio as a function of the figure of merit. Bulk 

 
Figure 5.3: Output switching fraction versus input power for an NLDC with different T values [76] 
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Figure 5.4: Required switching power versus figure of merit for a NLDC  [76] 

AlGaAs clearly has the best performance by requiring only ~1.3PC to cause switching. 

Superlattice requires ~1.95PC in the TE mode and ~1.8PC in the TM mode. Thus, 

between 40%-50% more power is required for superlattice compared to bulk AlGaAs. 

The next best performing material is GaAs/AlGaAs MQW which has a switching power 

~2.95PC in the TM mode. In all other cases, the required switching power is more than 

double than that required for superlattice. 

 

5.4 Nonlinear Mach-Zehnder Interferometer 

Mach-Zehnder interferometers are another type of device that is commonly used 

in telecommunications systems. As shown in Figure 5.5, power input to the MZI is split 

into two arms, one of which has a phase shifting element. Depending upon the amount of 

phase shift accumulated in the phase shifter, the beams in the two arms recombine at the 

output either constructively or destructively. In electro-optic modulators, the phase shifter 

operates by the electro-optic effect controlled by electronics. For all-optical switching, 

the phase shifter relies on the optical Kerr effect to cause an intensity-dependent phase 

shift [77]. In either case, the phase shift must be an odd multiple of π in order to cause 

completely destructive interference at the output. This is much smaller than the 4π phase 

shift required for an NLDC. Thus, an NLMZI may be more practical as an all-optical 

switching device. 
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Figure 5.5: Schematic of a Mach-Zehnder interferometer 

The design of a NLMZI is complicated by the use of materials with a uniform 

nonlinearity. However, a few methods to overcome this limitation have been proposed 

and implemented. Stegeman and Wright proposed the idea of increasing the optical 

intensity in one arm by reducing the waveguide cross section, which decreases the 

effective mode area [77]. Thus, the phase shifting arm experiences a larger nonlinear 

phase shift relative to the reference arm of the same length. In the case where the 

effective area of the phase shifting arms is half the effective area of the reference, the 

required phase shift is 2π since the reference arm gives a phase shift of π. However, this 

scheme is complicated by the difficulty in making single-mode waveguides that have 

double the effective area of the phase shifter waveguide [77]. In another design by Al-

hemyari et al., the power was split asymmetrically between the two arms of the NLMZI 

[78]. Thus, one arm experiences a larger nonlinear phase shift than the other. A switching 

fraction of nearly 80% was achieved using 330 fs pulses with ~8.5 mW of average input 

power. 

Quantum well intermixing opens the opportunity for creating a simplified NLMZI 

structure in MQW and superlattice waveguides. In one design by Kan’an et al., one arm 

of the NLMZI is made of as-grown material while the other arm is made up of intermixed 

material [79]. Since the intermixed material has a reduced nonlinearity, the intermixed 

waveguide acts as the reference arm. This design was implemented by Kan’an et al. in a 

GaAs/AlGaAs MQW structure in which intermixed regions were created by silica-cap 

IFVD. A switching contrast ratio of 7:1 was achieved with 150 fs pulses. However, the 

PL shift of the intermixed material was measured to be only about 37 nm. In a previous 

study of intermixing MQWs, a shift of ~40 nm in the PL peak resulted only in 60% 
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reduction of the nonlinear refraction coefficient [66]. Thus, it is assumed that the 

nonlinearity of the intermixed regions was only reduced by this amount. Furthermore, the 

device was tested at wavelengths near the bandgap where TPA is expected to be high. 

GaAs/AlAs superlattice offers several advantages over MQWs. The PL shift was 

shown to be about 150 nm after intermixing, which is over three-times larger than what 

has been achieved in MQW [66]. The nonlinear coefficients of intermixed superlattice 

were over an order of magnitude smaller than as-grown superlattice, which is nearly 

double the change in MQW. Thus, the phase shift in the as-grown arm does not need to 

overcome as much nonlinear phase in the reference arm. Intermixed waveguides could 

also be used as the input and output waveguides to avoid large amounts of nonlinear 

absorption and spectral broadening before the light encounters the nonlinear elements of 

the device. Also, the effect of TPA in as-grown superlattice was shown to be less as it has 

a lower figure of merit than MQW. Thus, superlattice may provide a performance 

enhancement and enable shorter NLMZIs when compared with other materials. 

 

5.5 Conclusions 

In this chapter, superlattice was evaluated as a material for creating all-optical 

signal processing devices. The figure of merit T was calculated to give a measure of the 

effect that TPA has on Kerr effect-induced phase shifts. Superlattice had values of T that 

were above 1 with the TE mode generally having larger values than the TM mode. The 

optimal operating wavelengths were between 1545 nm and 1565 nm for polarization 

independent operation while the lowest value of T was found in the TM mode at 1505 

nm. With the exception of bulk AlGaAs, superlattice has a lower figure of merit than 

other semiconductors. NLDCs made of superlattice require up to 50% more power over 

AlGaAs in order to cause switching, but require less than half the power of other 

semiconductors. For a NLMZI, superlattice may enable shorter devices than MQW 

waveguides since intermixing superlattice causes a larger change in the nonlinear 

coefficients which makes it better as a material for the reference arm. Furthermore, 

intermixed waveguides could be used as linear input and output waveguides for nonlinear 

devices. 
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Chapter 6  

Conclusions 
 

 

 

6.1 Summary 

This thesis has examined the linear and nonlinear properties of 14:14 GaAs/AlAs 

superlattice waveguides at wavelengths below the half-bandgap. It was necessary to 

examine the linear properties first followed by the nonlinear absorption coefficients in 

order to accurately model and calculate the nonlinear refraction coefficients. Both as-

grown and intermixed superlattice were treated theoretically and experimentally in order 

to evaluate their use in monolithically integrated all-optical devices. 

The linear properties of as-grown superlattice showed large polarization 

dependencies. Photoluminescence measurements revealed different optical emission 

peaks for the TE and TM polarizations, which indicates the lifting of the heavy-

hole/light-hole valence band degeneracy. This impacted many of the other optical 

properties including the linear index of refraction which was larger in the TE mode. As a 

result, confinement of light to the superlattice core was 20-30% smaller in the TM mode 

due to the reduced index contrast with the cladding layers. Birefringence in the 

waveguide also led to a group velocity mismatch between the TE and TM mode and 

differences in the group velocity dispersion. Intermixed superlattice showed a PL shift of 

~150 nm at room temperature and almost no difference between the TE and TM 

polarizations. Furthermore, the PL peak nearly coincides with the direct bandgap of 

Al0.50Ga0.50As. For this reason, it is believed that intermixed superlattice has reverted into 

an average alloy of AlGaAs. Linear loss measurements of as-grown superlattice showed 
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low loss coefficients of ~0.3 cm-1 for the TE mode and ~0.7 cm-1 for the TM mode. 

Losses in intermixed waveguides were much higher at around 7.5 cm-1 in both 

polarizations which is likely the result of a large defect density and surface roughness. 

Small PL peaks found on either side of the as-grown superlattice core layer indicate the 

presence of unintended GaAs quantum wells whose energy levels were found to agree 

with theoretical calculations. 

Nonlinear absorption was measured in as-grown and intermixed waveguides just 

below the bandgap. For as-grown superlattice, TPA was found to be the dominant 

nonlinear loss mechanism. The contribution of the buffer and cladding layers was 

deemed to be negligible based on previous measurements of bulk AlGaAs and the scaling 

laws for TPA in semiconductors. TPA coefficients in the TE mode were between 1.5 

cm/W and 4.0 cm/W, which were nearly four-times larger than in the TM mode and 

nearly an order of magnitude larger than in bulk AlGaAs. The rapid increase in α2 for the 

TE mode at shorter wavelengths and the relative flatness in the TM mode indicate a 

difference in the TPA resonance points for each polarization. Small peaks in the TPA 

curves coincide with the half-bandgap energies of the unintended GaAs quantum wells. 

Intermixed superlattice did not show signs of TPA as expected from the shift in the 

bandgap, but did show a measurable amount of 3PA when femtosecond pulses with large 

peak powers were used. 3PA coefficients were on the order of 0.01 cm3/GW2 and showed 

a polarization dependence. The contribution of the bulk layers to 3PA in intermixed 

waveguides was deemed to be negligible since the fifth-order effective mode area for the 

cladding layers was found to be an order of magnitude larger than the effective area of 

the core layer. When comparing the nonlinear absorption mechanisms, 3PA in intermixed 

superlattice was found to cause the least amount of loss which validates intermixed 

superlattice as a relatively linear material. 

Nonlinear refraction by self-phase modulation and cross-phase modulation was 

examined in as-grown and intermixed superlattice waveguides by observing spectral 

broadening. Calculation of the nonlinear coefficients for the bulk AlGaAs layers by using 

the direct bandgap scaling laws showed that the buffer and cladding layers contribute 

significantly to the total nonlinear refraction coefficient of the waveguide structure. The 

contribution from the indirect bandgap transition for these layers was found to be 
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negligible. The simple propagation model for a nonlinear medium was found to be 

insufficient, and thus a more comprehensive model that included dispersion, nonlinear 

absorption, and pulse shape was used instead. This required a numerical solution that 

used the split-step Fourier algorithm to simulate a pulse propagating in a nonlinear 

medium. Using this method, nonlinear refraction coefficients found for the as-grown 

superlattice core layer were between 1.5 cm2/W and 5.5 cm2/W. These values are larger 

than in bulk AlGaAs and shows similar enhancements as those seen in MQW 

waveguides. The TE mode had coefficients that were nearly two-times larger than the 

TM mode at wavelengths near the half-bandgap, which is again the result of the bandgap 

difference between the polarizations. Measurements of SPM in intermixed superlattice 

showed a reduction of over an order of magnitude in the value of the nonlinear 

coefficients. XPM between the TE and TM modes were measured in as-grown 

superlattice using a pump-probe setup. Group velocity mismatch caused the spectral 

broadening patterns to become asymmetric. By accounting for this mismatch in the 

simulator, the XPM nonlinear coefficients were found to steadily increase in the TE mode 

toward the half-bandgap while the curve for TM mode was flat and relatively featureless. 

The ratio of XPM-to-SPM was ~0.71 for the TE mode and ~0.42 for the TE mode. 

The application of superlattice to all-optical signal processing devices was 

explored. The figure of merit calculated showed that superlattice does not perform as well 

as bulk AlGaAs but is much better than other materials such as silicon and GaAs/AlGaAs 

MQWs. The power required for switching in a NLDC was larger in superlattice by up to 

50% over bulk AlGaAs, but less than half than what is required in other semiconductors. 

QWI was shown to enable the design of a simplified NLMZI and superlattice was found 

to have possible benefits over MQWs for fabricating NLMZIs since the nonlinear 

coefficients exhibit larger reductions in intermixed superlattice. Despite the reduced 

performance in the nonlinear properties of as-grown superlattice compared to bulk 

AlGaAs, the ability to intermix superlattice and enable monolithic integration makes up 

for the lost performance. Thus, overall, superlattice has been shown to be a good platform 

for creating complex photonic integrated circuits for all-optical signal processing. 
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6.2 Future Work 

The work presented in this thesis gives enough data such that complex nonlinear 

optical devices can be created. However, not all of the nonlinear properties have been 

completely characterized and the full potential of superlattice has not been practically 

demonstrated. Furthermore, changes to the superlattice structure and the intermixing 

process can be made to improve its properties. Lastly, fabrication of working all-optical 

switches would demonstrate the viability of superlattice as a platform for nonlinear optics 

and monolithic integration. Thus, there are several tasks that should be carried out in 

future studies in order to realize the full potential of superlattice. 

As was discussed in Section 4.2.4, superlattice has eight independent non-zero 

third-order nonlinear susceptibility tensor elements. This thesis dealt with properties that 

only include six of those elements. Furthermore, three of those elements 

( ) are aggregated and inseparable in the measurements taken for the TE 

mode. A complete characterization of the third-order nonlinear properties of superlattice 

must include these tensor elements. Measurements of four-wave mixing would be 

sufficient to characterize the remaining two tensor elements. Isolation of the , , 

and  elements will require measurement of SPM along different crystallographic 

directions. 
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Another issue that must be examined in further detail is the impact of the GaAs 

quantum wells found at the top and bottom of the superlattice core layer. These wells 

appear to have significantly altered the linear and nonlinear properties of the waveguides 

and may even be blamed for some of the non-ideal behaviour observed. This warrants a 

redesign of the waveguide structure to avoid the formation of these wells. One possible 

fix is to use AlAs as the topmost and bottommost layers of the superlattice. However, 

consultation with experienced operators of epitaxy machines resulted in the conclusion 

that this may complicate the growth process for the superlattice. Further study is required. 

Improvements to the intermixing process should be made to give better quality 

waveguides with less linear loss. The waveguides studied in this thesis are far too lossy 

for practical application. Other intermixing methods, such as ion-implantation, could be 

explored. In fact, ion-implantation is preferred for some structures such as QPM since the 
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achievable resolution is higher. However, attempts to improve silica cap IFVD should be 

pursued since many structure do not require high resolution and would benefit cost-wise 

from this less expensive intermixing method. 

Fabrication of all-optical switching devices, such as NLDCs and NLMZIs, would 

help greatly to demonstrate superlattice as a nonlinear material. Active devices, such as 

lasers and photodetectors, should also be designed and fabricated in superlattice to 

demonstrate its ability to act as both a passive and active material. Furthermore, such 

devices should include a mix of as-grown and intermixed material to show the potential 

of superlattice as a platform for photonic integrated circuits. 
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Appendix A  

Quantum Well Energy Calculations 
 

 

 

Overview of Calculation 

The GaAs quantum wells found at the top and bottom of the superlattice shown in 

Figure 2.3 were not intended as part of the waveguide structure. They take the form of 

asymmetric single quantum wells (ASQW) with a single well material (GaAs) and two 

different barrier materials (AlAs and Al0.56Ga0.44As). Thus, the barrier heights are 

different on either side of the well. This complicates the calculation of the quantum well 

energies. However, a solution to this problem was developed by Street  using a numerical 

algorithm based on the shooting method [39]. This solution is summarized here and 

further details can be found in Ref. [39]. 

The time-independent 1-D Schrödinger equation for an arbitrary potential profile 

under the effective mass approximation is expressed as 
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where u(z) is the envelope function of the bound carrier (either electrons or holes), m*(z) 

is the depth-dependent effective mass, v(z) is the potential profile, and E is the 

eigenenergy. At each heterointerface, the following boundary conditions must be 

satisfied: 
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where the subscripts “L” and “R” denote the left- and right-side of the interface and zi is 

the position of the interface. Exponentially-decaying potential profiles are assumed at the 

interfaces such that 
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where the subscripts “BL” and “BR” denote the left and right barriers, W is the width of 

the well, and A and B are arbitrary constants. To solve Equation (A.1), the shooting 

algorithm is used which is summarized as follows: 

 

1. A trial eigenenergy is chosen near the actual eigenenergy. 

2. An arbitrary value of A is chosen, and the envelope function uW(0) and its 

derivative are calculated from the boundary conditions for the left barrier. 

3. Equation (A.1) is integrated across the well using a fourth-order Runge-Kutta 

algorithm. 

4. The mismatch in the boundary conditions is calculated for the right barrier. A 

new trial eigenenergy is chosen such that the mismatch is reduced in the next 

iteration. 

5. If the mismatch falls below some acceptable value, the trial eigenenergy is 

taken to be approximately equal to the actual eigenenergy. 

 

The algorithm may be further extended to account for any arbitrary potential profile in 

the well region instead of a flat potential profile. This was done by dividing the potential 
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profile into small, discrete segments to give a piecewise constant potential profile. The 

shooting method is applied within each segment across the well.  

The computer program used to calculate the quantum well energies implemented 

the piecewise scheme. This extension of the algorithm was not necessary since the 

quantum wells dealt with in this study have flat potential profiles in the well region. 

However, since this code was already developed, known to work, and produces accurate 

results for most potential profiles, it was used for the calculations in this study. 

 

Results 

While AlAs and Al0.56Ga0.44As have indirect bandgaps, “bound” electrons in a 

quantum well have wavevectors around k=0, thus it is appropriate to use the direct 

bandgap energies when determining the band offsets and barrier heights [80]. Figure A.1 

shows the potential profile and parameters with the resulting bound energy levels. The 

parameters used to calculate the potential profile are summarized in Table A.1. The 

eigenenergies of two different potential profiles were calculated with the second potential 

profile having a well width reduced by 10%. This error in the well width is reasonable 

given the tolerances of the expitaxy process. This was done to match the second set of PL 

peaks reported in Section 2.3. The results of the calculations for two different well widths 

are listed in Table A.2. The heavy-hole (hh) transitions can only occur for the TE 

polarization and are thus associated with the TE PL peak. Light-hole (lh) transitions 

occur in either polarization. 

Table A.1: Parameters for GaAs quantum well calculations. Note that x represents the Al content 

ratio. 

 Symbol Value Source 

Bandgap (for direct gap) Eg 1.424 + 1.247x [41] 

Band offset split ∆EC:∆EV 65:35 [29] 

Effective electron mass mC 0.067 + 0.083x [41] 

Effective heavy-hole mass mV,hh 0.62 + 0.14x [41] 

Effective light-hole mass mV,lh 0.087 + 0.063x [41] 
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Figure A.1: GaAs quantum well potential profile with relevant energy quantities 

 

 

Table A.2: Calculated quantities for GaAs ASQWs 

 Symbol Well A Well B 

Well width W 40 nm 36 nm 

Conduction Level 1 Offset EC1 127 meV 144 meV 

Heavy-hole offset Ehh 24.7 meV 29.2 meV 

Light-hole offset Elh 90.2 meV 101 meV 

C1hh transition energy EC1hh 1.576 eV 1.597 eV 

C1lh transition energy EC1lh 1.641 eV 1.669 eV 

C1hh emission wavelength λC1hh 787 nm 776 nm 

C1lh emission wavelength λC1lh 756 nm 743 nm 
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Source Code 

The original source code implementing the algorithm known as “The Definitive 

Schödinger Solver” (TDSS) described here was developed by Michael Street of the 

University of Glasgow in 1997 [39]. The version of the source code used here was 

“diffV9”. Small modifications were made including the band offset split (the original 

split was set to 60:40) and the output data. All source code was written in Pascal. 

 

diffv9_sean.pas 

PROGRAM DIFFV9; 
{DIFFV1 : Calculates the PL peak wavelength (e1 -> hh1 transition) as a 
 function of the diffusion coefficient D for a GaAs square well. e1 and hh1 
 are calculated for a partially intermixed error function potential profile 
 using the Schrodinger Solver procedure of TDSSV1} 
 
{DIFFV2 : Calculates the diffusion coefficient D given a measured value for 
 the PL peak wavelength using a bisection method. It is assumed that 
  DeltaLambda(D)=Lambdacalc(D)-Lambdameas is a monotonically decreasing 
  function of D} 
 
{DIFFV3 : Identical to DIFFV2 except that secant methods are now employed 
 for the numerical solution of the eigenvalue equations. The Schrodinger 
 Solver procedure is based on that of TDSSV4} 
 
{DIFFV4 : Identical to DIFFV3 except that the goal function 
 DeltaLambda is calculated as a function of D} 
 
 
 
{DIFFV5 : Calculates the diffused Al fraction profile as a function of 
 the square root of the diffusion coefficient time product SQRT(D*t) 
 for an ASQW} 
 
{DIFFV6 : ACQW version of DIFFV5} 
 
{DIFFV7 : Calculates the e1 -> hh1 PL peak wavelength shift as a function of 
 the diffusion length SQRT(D*t) for an ASQW} 
 
{DIFFV8 : ACQW version of DIFFV7} 
 
{DIFFV9 : Calculates the e1 -> hh1 PL peak wavelength shift, the e2lh1 
 oscillator strength expressed as a fraction of the starting material 
 e2lh1 oscillator strength, and the bound electron energy levels as 
 functions of the diffusion length SQRT(D*t) for an ASQW} 
 
 
 
 
{TDSS (The Definitive Schrodinger Solver) : Solves Shrodinger's equation for 
 a GaAs/AlGaAs quantum well with an arbitrary potential profile. 
 Schrodinger's equation is formulated into 2 coupled first order ODE's 
 involving the wavefunction and its derivative. A continuous potential 
 profile in the well is defined by a global function and is subsequently 
 divided into strips and approximated by a piecewise constant profile. A 
 shooting method is then used for the solution of the eigenvalue equation 
 which is associated with the boundary conditions at the 2 barrier positions. 
 
 At each strip interface position, current continuity is enforced by 
 calculating 2 values (T1 and T2 say) for the wavefunction gradient: 
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 one calculated by integration of Schrodinger's equation across the strip to 
 the left of the interface (T1), and one amended value (T2) which may be 
 calculated from the current continuity condition T2=T1*mR/mL where mL and 
 mR denote the effective masses of the particle in question in the strips to 
 the left and right of the interface respectively. 
 
 All the bound energy levels may be found for the particle of interest 
 (electron, light or heavy hole) using extended arithmetic throughout in 
 conjunction with the Fourth Order Runge-Kutta algorithm for the integration 
 of Schrodinger's equation. All electron energies are in meV above the CB 
 edge of GaAs and correspondingly all hole energies are in meV below the VB 
 edge of GaAs. Adachi's parameters for the GaAs/AlGaAs material system are 
 employed throughout with a 60:40 CB:VB energy gap split ratio.} 
 
  
 
USES Crt; 
 
CONST 
 m0 : EXTENDED = 9.109534e-31; 
 hbarS : EXTENDED = 1.11215725e-68; 
 q : EXTENDED = 1.6021892e-19; 
 Eg : EXTENDED = 1424; {Eg for GaAs at 300K in meV} 
 
 DeltaZ : EXTENDED = 1e-10; 
 NW2 = 100; 
 NW1 = 40; 
 NB = 40; 
 N = NW1+NW2+NB; 
 
 AlB0 : EXTENDED = 1.0; 
 AlW1 : EXTENDED = 0.0; 
 AlW2 : EXTENDED = 0.56; 
 
 DeltaDL : EXTENDED = 1e-11; 
 DeltaDLs = 150; 
 
 MaxLevels = 10; 
 
 DeltaEs = 100; 
 EigenError : EXTENDED = 1e-13; 
 
TYPE 
 LevelArray = ARRAY[1..MaxLevels] OF EXTENDED; 
 UArray = ARRAY[0..N] OF EXTENDED; 
 LevelUArray = ARRAY[1..MaxLevels,0..N] OF EXTENDED; 
  
 
VAR 
  
 W1,W2,W,WB,DL, 
 lh1,Alphalh1,Betalh1,Alh1,Blh1,hh1,Alphahh1,Betahh1,Ahh1,Bhh1, 
 Lambda0,Lambda1,Lambda,DeltaLambda,OSCe2lh10,OSCe2lh1,AlBL,AlBR : EXTENDED; 
 Lambdahh1,Lambdahh2,Lambdalh1,Lambdalh2 : EXTENDED; 
 {DL is the diffusion length in m} 
 
 Ulh1,Uhh1,Ue2 : UArray; 
 es : LevelArray; 
 Ues : LevelUArray; 
 Alphaes,Betaes,Aes,Bes : LevelArray; 
 DLi,Zi : INTEGER; 
 DataOut : TEXT; 
 eLevels,eLevel : INTEGER; 
 
 
 
 
 FUNCTION erf(X : EXTENDED)  : EXTENDED; 
 {This function returns the value of the error function at X. This 
  polynomial approximation is accurate to within 1.5E-7 and it was taken 
  from the 'Handbook of Mathematical Functions', by Milton Abramowitz.} 
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 CONST 
   p = 0.3275911;     a1 = 0.254829592; 
  a2 = -0.284496736;  a3 = 1.421413741; 
  a4 = -1.453152027;  a5 = 1.061405429; 
 
 
 VAR 
   Y : EXTENDED; 
 
 
  FUNCTION F(X : EXTENDED) : EXTENDED; 
 
   BEGIN 
    IF ABS(X)>60 THEN 
     F:=1    {... For large X, erf(X) = 1  } 
    ELSE 
    BEGIN 
     Y:=1/(1+p*X); 
     F:=1-(a1*Y+a2*SQR(Y)+a3*Y*SQR(Y)+a4*SQR(SQR(Y)) 
               +a5*Y*SQR(SQR(Y)))*exp(-SQR(X)); 
    END; 
   END; 
 
 
  BEGIN {erf} 
   IF X < 0 THEN 
    erf := -F(-X) 
   ELSE 
    erf := F(X) 
  END; {erf} 
 
 
 
 FUNCTION AlF(Z,DL : EXTENDED) : EXTENDED; 
 {This function returns the Al concentration in the QW, at the position 
  Z. D and t are the diffusion coefficient of Al and diffusion (annealing) 
  time respectively} 
 
  VAR 
   L : EXTENDED; 
 
  BEGIN {AlF} 
 
   IF ((DL)<1e-100) THEN 
   BEGIN 
    IF (Z<=WB/2) THEN 
     AlF:=AlB0 
    ELSE 
     IF (Z<=(W1+WB/2)) THEN 
      AlF:=AlW1 
     ELSE 
      IF (Z<=(W1+W2+WB/2)) THEN 
       AlF:=AlW2 
      ELSE 
       AlF:=AlB0; 
   END 
 
   ELSE 
   BEGIN 
    L:=2*DL; 
    AlF:=AlB0-0.5*(AlB0-AlW1)*erf((Z-(WB/2))/L) 
            +0.5*(AlW2-AlW1)*erf((Z-((WB/2)+W1))/L) 
            +0.5*(AlB0-AlW2)*erf((Z-((WB/2)+W1+W2))/L); 
   END; 
  END; {AlF} 
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 FUNCTION AlminF(DL : EXTENDED) : EXTENDED; 
 
 VAR 
  I : INTEGER; 
  Z,min : EXTENDED; 
   
 
 BEGIN {AlminF} 
  min:=1; 
  Z:=0.5*DeltaZ; 
  FOR I:=1 TO N DO 
  BEGIN 
   IF AlF(Z,DL)<min THEN min:=AlF(Z,DL); 
   Z:=Z+DeltaZ; 
  END; 
  AlminF:=min; 
 END; {AlminF} 
 
 
 
 FUNCTION AlmaxF(DL : EXTENDED) : EXTENDED; 
 
 BEGIN {AlmaxF} 
  IF (AlBL<AlBR) THEN 
   AlmaxF:=AlBL 
  ELSE 
   AlmaxF:=AlBR; 
 END; {AlmaxF} 
 
 
 FUNCTION VF(Part: INTEGER;X : EXTENDED) : EXTENDED; 
 {Calculates e and h barrier heights in meV} 
 {NOTE: CHANGED THE SPLIT RATIO TO 65:35 - SJW} 
  BEGIN {VF} 
    IF Part=1 THEN 
     VF:=810.55*X {748.2*X} {e barrier height in meV above CB edge of GaAs} 
    ELSE 
     VF:=436.45*X; {498.8*X;} {h barrier height in meV below VB edge of GaAs} 
  END; {VF} 
 
 
 
  
 
 PROCEDURE EvalMismatch 
 (Part : INTEGER; 
  Energy : EXTENDED; 
   
  VAR Mismatch : EXTENDED; 
  VAR U : UArray; 
  VAR Alpha,Beta : EXTENDED); 
   
 
 
  VAR 
   mBL,mBR,VBL,VBR,Z1,Z2,Al1,Al2,V1,V2,F1,F2,m1,m2,T1,T2,C : EXTENDED; 
   I : INTEGER; 
 
 
 
  FUNCTION mF(Part : INTEGER;X : EXTENDED) : EXTENDED; 
 
  BEGIN {mF} 
   IF Part=1 THEN 
    mF:=m0*(0.067+0.083*X)       {e} 
   ELSE 
    IF Part=2 THEN 
     mF:=m0*(0.087+0.063*X)      {lh} 
    ELSE 
     mF:=m0*(0.62+0.14*X);       {hh} 
  END; {mF} 
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  FUNCTION WaveVector(mB,VB,Energy : EXTENDED) : EXTENDED; 
 
  BEGIN {WaveVector} 
   WaveVector:=SQRT(2*mB*(VB-Energy)*q/(1000*hbarS)); 
  END; {WaveVector} 
 
 
 
 
  PROCEDURE RungeKutta 
  (F : EXTENDED; 
   UIm1,TIm1 : EXTENDED; 
   VAR UI,TI : EXTENDED); 
 
 
   VAR KU1,KU2,KU3,KU4,KT1,KT2,KT3,KT4 : EXTENDED; 
 
 
   BEGIN {RungeKutta} 
 
    KU1:=DeltaZ*TIm1; 
    KT1:=DeltaZ*F*UIm1; 
 
    KU2:=DeltaZ*(TIm1+KT1/2); 
    KT2:=DeltaZ*F*(UIm1+KU1/2); 
 
    KU3:=DeltaZ*(TIm1+KT2/2); 
    KT3:=DeltaZ*F*(UIm1+KU2/2); 
 
    KU4:=DeltaZ*(TIm1+KT3); 
    KT4:=DeltaZ*F*(UIm1+KU3); 
 
    UI:=UIm1+(1/6)*(KU1+KU4+2*(KU2+KU3)); 
 
    TI:=TIm1+(1/6)*(KT1+KT4+2*(KT2+KT3)); 
 
   END; {RungeKutta} 
 
 
 
  BEGIN {EvalMismatch} 
   mBL:=mF(Part,AlBL);mBR:=mF(Part,AlBR); 
   VBL:=VF(Part,AlBL);VBR:=VF(Part,AlBR); 
 
   Alpha:=WaveVector(mBL,VBL,Energy); 
   Beta:=WaveVector(mBR,VBR,Energy); 
 
   I:=0; 
   Z2:=0.5*DeltaZ; 
   Al2:=AlF(Z2,DL); 
   V2:=VF(Part,Al2); 
   m2:=mF(Part,Al2); 
   F2:=2*m2*(V2-Energy)*q/(1000*hbarS); 
   U[I]:=1; 
   C:=Alpha*U[I]/mBL; 
   T1:=0; 
   T2:=m2*C; 
   FOR I:=1 TO N DO 
   BEGIN 
    m1:=m2; 
    F1:=F2; 
    Z2:=Z2+DeltaZ; 
    Al2:=AlF(Z2,DL); 
    V2:=VF(Part,Al2); 
    m2:=mF(Part,Al2); 
    F2:=2*m2*(V2-Energy)*q/(1000*hbarS); 
 
    RungeKutta(F1,U[I-1],T2,U[I],T1); 
    {Calculates quantities U[I] and T1 at I in terms of quantities U[I-1] 
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     and T2 at (I-1) and F1 at (I-0.5)} 
 
    C:=T1/m1; 
    T2:=m2*C; 
   END; 
    
   Mismatch:=C+Beta*U[N]/mBR; 
 
  END; {EvalMismatch} 
 
 
 
 
  
 PROCEDURE EvalEigenU 
 (Part : INTEGER; 
  E1,E2 : EXTENDED; 
 
  VAR Eigen : EXTENDED; 
  VAR U : UArray; 
  VAR Alpha,Beta,A,B : EXTENDED); 
 
 VAR 
  Mismatch,Mismatch1,Mismatch2,G,E3 : EXTENDED; 
 
 BEGIN {EvalEigenU} 
  EvalMismatch(Part,E1,Mismatch1,U,Alpha,Beta); 
  REPEAT 
   EvalMismatch(Part,E2,Mismatch2,U,Alpha,Beta); 
   G:=(Mismatch2-Mismatch1)/(E2-E1); 
   E3:=E2-(Mismatch2/G); 
   E1:=E2; 
   Mismatch1:=Mismatch2; 
   E2:=E3; 
  UNTIL (ABS(E1-E2)<EigenError); 
  Eigen:=E2; 
  EvalMismatch(Part,Eigen,Mismatch,U,Alpha,Beta); 
  A:=U[0]; 
  B:=exp(Beta*W)*U[N]; 
 END; {EvalEigenU} 
 
 
 
 
 
 FUNCTION Overlap 
 (U1 : UArray; 
  Alpha1,Beta1,A1,B1 : EXTENDED; 
  U2 : UArray; 
  Alpha2,Beta2,A2,B2 : EXTENDED) : EXTENDED; 
 
 {This function uses Simpson's Rule to evaluate the overlap integral 
  between 2 wavefunctions U1 and U2 assuming that the wavefunctions 
  decay to negligible values at distances equal to the well width 
  from the well interface positions} 
 
  VAR 
   I : INTEGER; 
   Z,UL1,UR1,UL2,UR2,Oddsum,Evensum : EXTENDED; 
 
  BEGIN {Overlap} 
   Oddsum:=0; 
   Evensum:=0; 
   I:=-N; 
   REPEAT 
    Z:=I*DeltaZ; 
    UL1:=A1*exp(Alpha1*Z); 
    UL2:=A2*exp(Alpha2*Z); 
    Evensum:=Evensum+UL1*UL2; 
    I:=I+1; 
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    Z:=I*DeltaZ; 
    UL1:=A1*exp(Alpha1*Z); 
    UL2:=A2*exp(Alpha2*Z); 
    Oddsum:=Oddsum+UL1*UL2; 
    I:=I+1; 
   UNTIL (I=0); 
 
   REPEAT 
    Evensum:=Evensum+U1[I]*U2[I]; 
    I:=I+1; 
    Oddsum:=Oddsum+U1[I]*U2[I]; 
    I:=I+1; 
   UNTIL (I=N); 
 
   Evensum:=Evensum+U1[I]*U2[I]; {Account for U1[I]*U2[I] at I=N} 
 
   REPEAT 
    I:=I+1; 
    Z:=I*DeltaZ; 
    UR1:=B1*exp(-1*Beta1*Z); 
    UR2:=B2*exp(-1*Beta2*Z); 
    Oddsum:=Oddsum+UR1*UR2; 
     
    I:=I+1; 
    Z:=I*DeltaZ; 
    UR1:=B1*exp(-1*Beta1*Z); 
    UR2:=B2*exp(-1*Beta2*Z); 
    Evensum:=Evensum+UR1*UR2; 
   UNTIL (I=2*N); 
 
   I:=-N; 
   Z:=I*DeltaZ; 
   UL1:=A1*exp(Alpha1*Z); 
   UL2:=A2*exp(Alpha2*Z); 
   I:=2*N; 
   Z:=I*DeltaZ; 
   UR1:=B1*exp(-1*Beta1*Z); 
   UR2:=B2*exp(-1*Beta2*Z); 
 
   Overlap:=(DeltaZ/3)*(2*Evensum-UL1*UL2-UR1*UR2+4*Oddsum); 
 
  END; {Overlap} 
 
 
 
 PROCEDURE Normalize 
 (VAR U : UArray; 
  VAR Alpha,Beta,A,B : EXTENDED); 
 
 
  VAR 
   I : INTEGER; 
   NFactor : EXTENDED; 
 
  BEGIN {Normalize} 
    
   NFactor:=SQRT(Overlap(U,Alpha,Beta,A,B,U,Alpha,Beta,A,B)); 
 
   A:=A/NFactor; 
   B:=B/NFactor; 
   FOR I:=0 TO N DO U[I]:=U[I]/NFactor; 
 
  END; {Normalize} 
 
 
 PROCEDURE SchrodingerSolver1 
 (DL : EXTENDED; 
 Part : INTEGER; 
 
 VAR Eigen : EXTENDED; 
 VAR U : UArray; 
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 VAR Alpha,Beta,A,B : EXTENDED); 
 
 {Calculates the first bound e-value and the corresponding normalised 
  e-function for particle Part} 
 
 
 VAR 
  E1,E2,DeltaE, 
  Mismatch1,Mismatch2 : EXTENDED; 
  Almin,Almax,Vmin,Vmax : EXTENDED; 
 
 BEGIN {SchrodingerSolver1} 
 
  Almin:=AlminF(DL); 
  Almax:=AlmaxF(DL); 
 
  Vmin:=VF(Part,Almin); 
  Vmax:=VF(Part,Almax); 
 
  DeltaE:=(Vmax-Vmin)/DeltaEs; 
 
  E2:=Vmin;                      {E in meV} 
  EvalMismatch(Part,E2,Mismatch2,U,Alpha,Beta); 
  REPEAT 
   E1:=E2; 
   Mismatch1:=Mismatch2; 
   E2:=E1+DeltaE; 
   EvalMismatch(Part,E2,Mismatch2,U,Alpha,Beta); 
  UNTIL ((Mismatch1*Mismatch2)<0); 
 
  EvalEigenU(Part,E1,E2,Eigen,U,Alpha,Beta,A,B); 
  Normalize(U,Alpha,Beta,A,B); 
 
 END; {SchrodingerSolver1} 
 
 
 
 
 PROCEDURE SchrodingerSolverAll 
 (DL : EXTENDED; 
 Part : INTEGER; 
 
 VAR LevelsSolved : INTEGER; 
 VAR Eigens : LevelArray; 
 VAR Us : LevelUArray; 
 VAR Alphas,Betas,As,Bs : LevelArray); 
 
 {Calculates all of the bound e-values and the corresponding normalised 
  e-functions for particle Part} 
 
 
 VAR 
  E1,E2,DeltaE, 
  Mismatch1,Mismatch2 : EXTENDED; 
  Almin,Almax,Vmin,Vmax : EXTENDED; 
  Eigen : EXTENDED; 
  U : UArray; 
  Alpha,Beta,A,B : EXTENDED; 
  Ei : INTEGER; 
 
 
 PROCEDURE EigenInInterval; 
 
 VAR 
  I : INTEGER; 
 
 BEGIN {EigenInInterval} 
  EvalEigenU(Part,E1,E2,Eigen,U,Alpha,Beta,A,B); 
  Normalize(U,Alpha,Beta,A,B); 
  LevelsSolved:=LevelsSolved+1; 
  Eigens[LevelsSolved]:=Eigen; 
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  FOR I:=0 TO N DO Us[LevelsSolved,I]:=U[I]; 
  Alphas[LevelsSolved]:=Alpha; 
  Betas[LevelsSolved]:=Beta; 
  As[LevelsSolved]:=A; 
  Bs[LevelsSolved]:=B; 
 END; {EigenInInterval} 
 
     
 BEGIN {SchrodingerSolverAll} 
 
  Almin:=AlminF(DL); 
  Almax:=AlmaxF(DL); 
 
  Vmin:=VF(Part,Almin); 
  Vmax:=VF(Part,Almax); 
 
  DeltaE:=(Vmax-Vmin)/DeltaEs; 
 
  E2:=Vmin;                      {E in meV} 
  EvalMismatch(Part,E2,Mismatch2,U,Alpha,Beta); 
 
  LevelsSolved:=0; 
  FOR Ei:=1 TO (DeltaEs-1) DO 
  BEGIN 
   E1:=E2; 
   Mismatch1:=Mismatch2; 
   E2:=E2+DeltaE; 
   EvalMismatch(Part,E2,Mismatch2,U,Alpha,Beta); 
   IF ((Mismatch1*Mismatch2)<0) THEN EigenInInterval; 
  END; 
  Ei:=DeltaEs; 
  E1:=E2; 
  Mismatch1:=Mismatch2; 
  E2:=Vmax; 
  EvalMismatch(Part,E2,Mismatch2,U,Alpha,Beta); 
  IF ((Mismatch1*Mismatch2)<0) THEN EigenInInterval; 
 END; {SchrodingerSolverAll} 
 
 
 
 
 PROCEDURE OutputData; 
 
 BEGIN {OutputData} 
  WRITE(DL,#9,DeltaLambda:6:2,#9,OSCe2lh1:10:6); 
  FOR eLevel:=1 TO (eLevels-1) DO WRITE(#9,es[eLevel]:8:2); 
  WRITELN(#9,es[eLevels]:8:2); 
 
  WRITE(DataOut,DL,#9,DeltaLambda:6:2,#9,OSCe2lh1:10:6); 
  FOR eLevel:=1 TO (eLevels-1) DO WRITE(DataOut,#9,es[eLevel]:8:2); 
  WRITELN(DataOut,#9,es[eLevels]:8:2); 
 END; {OutputData} 
 
 
 
 
 
BEGIN {Main Program} 
 ASSIGN(DataOut,'out.txt');REWRITE(DataOut); 
  
 ClrScr; 
 
 W1:=NW1*DeltaZ; 
 W2:=NW2*DeltaZ; 
 WB:=NB*DeltaZ; 
 W:=N*DeltaZ; 
 
 {********************************************************************} 
 
 {Evaluate starting material parameters} 
 DL:=0; 
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 AlBL:=AlF(0,DL); 
 AlBR:=AlF(W,DL); 
 SchrodingerSolverAll(DL,1,eLevels,es,Ues,Alphaes,Betaes,Aes,Bes); 
 SchrodingerSolver1(DL,2,lh1,Ulh1,Alphalh1,Betalh1,Alh1,Blh1); 
 SchrodingerSolver1(DL,3,hh1,Uhh1,Alphahh1,Betahh1,Ahh1,Bhh1); 
 {NOTE: CHANGED OUTPUT DATA - SJW} 
 Lambdahh1:=1.24e6/(es[1]+hh1+Eg); 
 Lambdahh2:=1.24e6/(es[2]+hh1+Eg); 
 Lambdalh1:=1.24e6/(es[1]+lh1+Eg); 
 Lambdalh2:=1.24e6/(es[2]+lh1+Eg); 
 WriteLn('HH Transition 1:', Lambdahh1, ' nm,  (e1 offset: ', es[1], ' mEv, hh1 offset: 
', hh1, ' mEv)'); 
 WriteLn('HH Transition 2:', Lambdahh2, ' nm,  (e2 offset: ', es[2], ' mEv, hh1 offset: 
', hh1, ' mEv)'); 
 WriteLn('LH Transition 1:', Lambdalh1, ' nm,  (e1 offset: ', es[1], ' mEv, lh1 offset: 
', lh1, ' mEv)'); 
 WriteLn('LH Transition 2:', Lambdalh2, ' nm,  (e2 offset: ', es[2], ' mEv, lh1 offset: 
', lh1, ' mEv)'); 
 
END.{Main Program} 
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Appendix B  

MATLAB Code for the Split-step 
Fourier Method 

 

 

 

Overview 

The source code for the split-step Fourier method used in this thesis to study SPM 

was originally developed by Danielle Modotto of the Università di Brescia. That code is 

listed under the file bpm_chi3.m. The split-step Fourier method implemented is a variation 

of that described here in which the linear step is split into two “half” steps [3]. Several 

modifications were made to this code to improve performance and to make it more 

flexible. Three-photon absorption was added for simulation of intermixed superlattice. 

The calculation engine was separated into a file named bpmgnlse.m. The main program 

code in bpm_batch.m was developed to execute a batch of BPM simulation runs with 

varying parameters. In most simulation, batch runs varied the power level, thus giving the 

spectral evolution with input power. To simulate XPM, the code was modified to include 

a second propagation equation with group velocity mismatch. The XPM code is listed in 

the files bpmxpm.m and bpmxpm_batch.m. Chirped super-Gaussian pulses were generated by a 

file named gaussian.m.  All code is written in MATLAB. 
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Source Code 

bpm_chi3.m 

%   
%  1-D BPM code (time domain) 
%  for chi3 (Kerr) nonlinear materials.  
%  Dispersion (beta2,beta3), Kerr nonlinearity, TPA, 
%  self-steepening, Raman effect. 
% 
%  July 2005 
% 
 
 
 
t0=clock; 
j=sqrt(-1);   % imaginary unit 
 
% 
% input data 
% 
 
lambda=1.550e-6;       % wavelength   
k0=2*pi/lambda;        % free-space wave number 
c=3e8   ;              % velocity of light 
nu=c/lambda ;          % frequency 
 
% dispersion coefficients 
beta2=-1.28e-24;       % GVD (m^-1 s^2) 
beta3=7.5779e-39;      % third-order dispersion (m^-1 s^3) 
 
% nonlinearity 
n2=1.6e-13*1e-4;     % Kerr coefficient (m^2/Watt) 
Aeff=1.65e-12;       % waveguide effective area (m^2) 
gamma=(2*pi/lambda)*(n2/Aeff);  % nonlinear parameter 
steep_on=1;          % 1 if self-steepening is present, 0 otherwise   
raman_on=1;          % 1 if Raman effect is present, 0 otherwise   
Tr=3.289e-15;        % slope of the Raman gain (s) 
 
% losses 
alpha=0 ;          % (m^-1 )linear propagation loss  
alpha2=0 ;         % (m /Watt) 2-photon absorption coefficient 
 
% numerical simulation data 
pointt=1024;         % number of points along t (time) 
iterations=10000;    % number of iterations along z (the number of points along z is 
iterations+1) 
numplots=100;        % the number of plots along z is numplots+1 
njump=iterations/numplots; 
% 
tmax=2e-12;         % temporal window from -tmax to tmax  
zmax=0.0040 ;       % propagation from 0 to zmax 
% 
deltat=2*tmax/pointt;      % step along t 
deltaz=zmax/(iterations);  % step along z  
 
 
%  input field 
T0=32.89e-15 ;        
%T0=162e-15/1.665 ;   % T0=FWHM/1.665 (for a Gaussian pulse) 
%amp=2*sqrt(abs(beta2)/(gamma*T0^2))    % soliton amplitude (only if beta2<0) 
amp=10.97;            % amplitude (sqrt(Watt)) 
C=0;                  % chirp 
t=-tmax:deltat:tmax-deltat; 
 
% Gaussian (chirped) pulse 
%q=amp*exp(-(1+j*C)*(t/(sqrt(2)*T0)).^2);  
% 
q=amp*sech(t/T0);      % temporal soliton  
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% 
% asymmetric input pulse 
%tshift=1*1.4*T0; 
%factor=1*0.4; 
%q=amp*(exp(-(1+j*C)*((t-0)/(sqrt(2)*T0)).^2)+... 
%           1*factor*exp(-(1+j*C)*((t-tshift)/(sqrt(2)*T0)).^2) );  
 
%---------------------------------------------------- 
%---------------------------------------------------- 
%  vectors 
indfreq=-pointt/2:1:pointt/2-1;   % frequencies of the numerical algorithm 
omega=(pi./tmax).*indfreq;        
prop=(beta2/2)*(omega.^2)-(beta3/6)*(omega.^3); % dispersion in the frequency domain 
% 
distance=[]; 
real_q=[];      % real part of the electric field 
imag_q=[];      % imaginary part of the electric field 
Q=[];           % power 
Qnorm=[];       % normalized power 
Qfft=[];        % power spectrum 
Qfftnorm=[];    % normalized power spectrum 
real_q=[real_q real(q')]; 
imag_q=[imag_q imag(q')]; 
Q=[Q abs(q').^2]; 
Qnorm=[Qnorm (abs(q').^2)/max(abs(q').^2)]; 
Qfft=[Qfft abs(deltat*fftshift(fft(q'))).^2 ]; 
Qfftnorm=[Qfftnorm abs(fftshift(fft(q'))).^2/... 
               max(abs(fftshift(fft(q'))).^2) ]; 
energy=[];      % energy  
deltat*sum((abs(q).^2)) ; 
 
energy=[energy deltat*sum((abs(q).^2))] ; 
distance=[distance 0]; 
% 
% MAIN PROGRAM 
% 
for loop_step=1:1:iterations 
% 
%  FFT and (HALF) linear step 
   qs=deltat*fftshift(fft(q)); % FFT 
   fact=j.*prop.*0.5*deltaz; 
   qs=exp(fact).*qs;       % propagation in the frequency domain 
   qs_old=qs; 
   q=(1/deltat)*ifft(ifftshift(qs)); 
%  self-steepening (in the frequency domain) 
   if steep_on==1 
     steepening=deltat*fftshift(fft((abs(q).^2).*q)); 
     qs=qs-(n2/(Aeff*c))*(j*2*omega).*steepening*deltaz;  
   end 
%  Raman  
   if raman_on==1 
     term_fft=deltat*fftshift(fft(abs(q).^2)); 
     convolution=(1/(deltat*pointt))*conv(qs_old,j*omega.*term_fft); 
     convolution=convolution(pointt/2+1:1:pointt/2+pointt); 
     qs=qs-j*gamma*Tr*convolution*deltaz; 
   end 
%  IFFT (back in the time domain)  
   q=(1/deltat)*ifft(ifftshift(qs)); 
%  nonlinear step (Kerr effect) 
   q=q.*exp(j*(gamma*(abs(q).^2)).*deltaz ); 
%  linear and nonlinear losses    
   q=q.*exp(-(0.5*alpha  +0.5*(alpha2/Aeff)*abs(q).^2 ).*deltaz); 
    
%  FFT and (HALF) linear step 
   qs=deltat*fftshift(fft(q)); % FFT 
   % qs_old=qs; 
   fact=j.*prop.*0.5*deltaz; 
   qs=exp(fact).*qs;       % propagation in the frequency domain  
%  IFFT (back in the time domain)   
   q=(1/deltat)*ifft(ifftshift(qs)); 
   % 
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   if rem(loop_step,njump)==0  % if loop_step is multiple of njump, it saves the results 
      loop_step 
      calculated_energy=deltat*sum((abs(q).^2)) 
      energy=[energy deltat*sum((abs(q).^2))] ; 
      real_q=[real_q real(q')]; 
      imag_q=[imag_q imag(q')]; 
      Q=[Q abs(q').^2]; 
      Qnorm=[Qnorm (abs(q').^2)/max(abs(q').^2)]; 
      Qfft=[Qfft abs(qs').^2]; 
      Qfftnorm=[Qfftnorm abs(qs').^2/max(abs(qs').^2)]; 
      zeta=loop_step*deltaz ; 
      distance=[distance zeta];  
   end  
end; 
t_elapsed=etime(clock,t0) 
% 
%---------------------------------------------------- 
%---------------------------------------------------- 
 
% it saves the results to files 
 
[lt,lz]=size(Q); 
step_t=1; 
real_q=real_q(1:step_t:lt,:) ; 
imag_q=imag_q(1:step_t:lt,:) ; 
Q=Q(1:step_t:lt,:) ; 
Qnorm=Qnorm(1:step_t:lt,:) ; 
Qfft=Qfft(1:step_t:lt,:) ; 
Qfftnorm=Qfftnorm(1:step_t:lt,:) ; 
t=t(1:step_t:lt) ; 
indfreq=indfreq(1:step_t:lt); 
deltat=deltat*step_t; 
 
save real_q.dat real_q -ascii       % real part of the electric field 
save imag_q.dat imag_q -ascii       % imaginary part of the electric field 
save Q.dat Q -ascii                 % power 
save Qnorm.dat Qnorm -ascii         % normalized power 
save Qfft.dat Qfft -ascii           % power spectrum  
save Qfftnorm.dat Qfftnorm -ascii   % normalized power spectrum 
save energy.dat energy -ascii 
save z.dat distance -ascii          % z 
save t.dat t -ascii                 % time  
save freq.dat indfreq -ascii        % frequencies of the numerical algorithm 
save deltat.dat deltat -ascii       % time step 
save lambda.dat lambda -ascii       % central wavelength 
 
 

gaussian.m 

function q = gaussian(FWHM, amp, t, C, tshift, factor, m) 
 
% 
% Asymmetric Super-Gaussian pulse generator with chirp 
% 
% August 24, 2005 
% Sean Wagner 
% Department of Electrical and Computer Engineering 
% University of Toronto 
% 
% Based on Matlab code orginally written by D. Modotto. 
% 
% $Id: gaussian.m,v 1.2 2005/10/26 21:53:56 Sean Exp $ 
% 
% PARAMETERS 
% FHWM   - full width at half maximum (s) 
% amp    - peak amplitude (sqrt(Watt)) 
% t     - vector of time values (s) 
% C     - chirp parameter [OPTIONAL] 
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% tshift  - asymmetric pulse temporal shift [OPTIONAL] 
% factor  - asymmetric pulse amplitude factor [OPTIONAL] 
% 
 
if nargin<7 
 m=1; 
end; 
 
if nargin<6 
 factor=0; 
 tshift=0; 
end; 
if nargin<4 
 C=0; 
end; 
 
T0=FWHM/1.665; 
 
q=amp*(exp(-(1+j*C)/2.*((t/T0).^2).^m)+... 
           1*factor*exp(-(1+j*C)/2.*(((t-tshift)/T0).^2).^m) ); 
 

bpmgnlse.m 

function [qout, z, t_elapsed] = bpmgnlse(params, qin) 
%   
% 1-D BPM code (time domain) 
% for chi3 (Kerr) nonlinear materials.  
% Dispersion (beta2,beta3), Kerr nonlinearity, TPA, 
% self-steepening, Raman effect. 
% 
% August 23, 2005 
% Sean Wagner 
% Department of Electrical and Computer Engineering 
% University of Toronto 
% 
% Based on code bpm_chi3.m orginally written by D. Modotto 
% 
% $Id: bpmgnlse.m,v 1.2 2005/09/29 19:05:53 Sean Exp $ 
% 
% USAGE: 
% 
% Submit a structure (param) with the following fields and proper 
% units: 
% 
% params.runnum       - Run number 
% params.lambda       - Center wavelength (m) 
% params.beta2        - GVD (m^-1 s^2) 
% params.beta3        - Third-order dispersion (m^-1 s^3) 
% params.n2           - Kerr coefficient (m^2/Watt) 
% params.Aeff         - Waveguide effective area (m^2) 
% params.steep_on     - 1 to include self-steepening effect 
% params.raman_on     - 1 to include Raman effect 
% params.Tr           - slope of Raman gain (s) 
% params.alpha        - Linear loss coefficient (m^-1) 
% params.alpha2       - 2-photon absorption coefficient (m Watt^-1) 
% params.iterations   - number of iterations along z 
% params.numplots     - number of points along z to return 
% params.reportpnts   - number of points along z to report on screen 
% params.deltat       - temporal step interval (s) 
% params.deltaz       - spatial step interval (m) 
% 
% RETURNS 
% q                     - complex field envelope over t and z 
% freq                  - vector of independent frequencies 
% z                     - vector of z coordinates (m) 
% telapsed              - calcuation time (s) 
% 
 
% 
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% Constants 
% 
j=sqrt(-1);   % imaginary unit 
c=299792458;  % velocity of light (m s^-1) 
 
% 
% Constant parameters for calculations 
% 
runnum=params.runnum; 
deltat=params.deltat; 
deltaz=params.deltaz; 
n2=params.n2; 
beta2=params.beta2; 
beta3=params.beta3; 
Aeff=params.Aeff; 
Aeff5=params.Aeff5; 
lambda=params.lambda; 
alpha=params.alpha; 
alpha2=params.alpha2; 
alpha3=params.alpha3; 
Tr=params.Tr; 
raman_on=params.raman_on; 
steep_on=params.steep_on; 
iterations=params.iterations; 
numplots=params.numplots; 
reportpnts=params.reportpnts; 
 
 
%---------------------------------------------------- 
%---------------------------------------------------- 
tic; 
gamma=(2*pi/lambda)*(n2/Aeff);  % nonlinear parameter 
njump=iterations/numplots; 
nreport=iterations/reportpnts; 
pointt=length(qin); 
%  vectors 
indfreq=-pointt/2:1:pointt/2-1;   % frequencies of the numerical algorithm 
omega=(pi./(pointt*deltat)).*indfreq; 
prop=(beta2/2)*(omega.^2)-(beta3/6)*(omega.^3); % dispersion in the frequency domain 
qout=[]; 
qout=[qout qin']; 
z=[]; 
z=[z 0]; 
q=qin; 
 
% 
% MAIN PROGRAM 
% 
for loop_step=1:1:params.iterations 
% 
% FFT and (HALF) linear step 
  qs=deltat*fftshift(fft(q)); % FFT 
  fact=j.*prop.*0.5*deltaz; 
  qs=exp(fact).*qs;       % propagation in the frequency domain 
  qs_old=qs; 
  q=(1/deltat)*ifft(ifftshift(qs)); 
% self-steepening (in the frequency domain) 
  if steep_on==1 
    steepening=deltat*fftshift(fft((abs(q).^2).*q)); 
    qs=qs-(n2/(Aeff*c))*(j*2*omega).*steepening*deltaz;  
  end 
% Raman  
  if raman_on==1 
    term_fft=deltat*fftshift(fft(abs(q).^2)); 
    convolution=(1/(deltat*pointt))*conv(qs_old,j*omega.*term_fft); 
    convolution=convolution(pointt/2+1:1:pointt/2+pointt); 
    qs=qs-j*gamma*Tr*convolution*deltaz; 
  end 
% IFFT (back in the time domain)  
  q=(1/deltat)*ifft(ifftshift(qs)); 
% nonlinear step (Kerr effect) 
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  q=q.*exp(j*(gamma*(abs(q).^2)).*deltaz ); 
% linear and nonlinear losses    
  q=q.*exp(-(0.5*alpha  +0.5*(alpha2/Aeff)*abs(q).^2 +0.5*(alpha3/Aeff5^2)*abs(q).^4 
).*deltaz); 
% FFT and (HALF) linear step 
  qs=deltat*fftshift(fft(q)); % FFT 
  fact=j.*prop.*0.5*deltaz; 
  qs=exp(fact).*qs;       % propagation in the frequency domain  
% IFFT (back in the time domain)   
  q=(1/deltat)*ifft(ifftshift(qs)); 
% Record along z 
  if rem(loop_step,nreport)==0 
    runnum 
    loop_step 
    qsqrd = abs(q).^2; 
    calculated_energy=deltat*sum(qsqrd)  
  end 
  if rem(loop_step,njump)==0  % if loop_step multiple of njump, saves results 
    qsqrd = abs(q).^2; 
    qout=[qout q']; 
    zeta=loop_step*deltaz ; 
    z=[z zeta];  
  end  
end; 
t_elapsed = toc 
 

bpm_batch.m 

%   
% BPM Batch 
% Runs a series of 1-D BPM simulations using bpmgnlse.m 
% 
% September 2, 2005 
% Sean Wagner 
% Department of Electrical and Computer Engineering 
% University of Toronto 
% 
% Based on code bpm_chi3.m orginally written by D. Modotto 
% 
% $Id: bpm_batch.m,v 1.2 2005/09/29 19:05:34 Sean Exp $ 
% 
% USAGE: 
% 
% Submit a structure (param) with the following fields and proper 
% units: 
% 
% params.runnum         - Run number 
% params.lambda         - Center wavelength (m) 
% params.beta2          - GVD (m^-1 s^2) 
% params.beta3          - Third-order dispersion (m^-1 s^3) 
% params.n2             - Kerr coefficient (m^2/Watt) 
% params.Aeff           - Waveguide effective area (m^2) 
% params.steep_on       - 1 to include self-steepening effect 
% params.raman_on       - 1 to include Raman effect 
% params.Tr             - slope of Raman gain (s) 
% params.alpha          - Linear loss coefficient (m^-1) 
% params.alpha2         - 2-photon absorption coefficient (m Watt^-1) 
% params.iterations     - number of iterations along z 
% params.numplots       - number of points along z to return 
% params.reportpnts     - number of points along z to report on screen 
% params.deltat         - temporal step interval (s) 
% params.deltaz         - spatial step interval (m) 
% 
% 
 
clear all 
 
% 
% Constants 
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% 
j=sqrt(-1);   % imaginary unit 
c=299792458;  % velocity of light (m s^-1) 
 
% 
% Description 
% 
description = 'Superlattice intermixed TE, 1450nm (2006-0504-data07)'; 
filepath    = './results/2006/07 2006/2407'; 
dataset     = 'dataset04'; 
scantype    = 'pwr'; 
 
% 
% Setup results directory 
 
system(['mkdir "', filepath, '"']) 
 
% 
% Batch run parameters 
% 
numruns     = 41;                     % Number of runs to do 
 
 
% 
% Temporal and spatial paramters 
% 
lambda            = 1445e-9;        % center wavelength (m) 
pointt            = 2^12;             % number of points along t (time) 
zeropadfact       = 2^2;              % zero padding factor 
tmax              = 2e-12;            % temporal window from -tmax to tmax (s) 
zmax              = 0.005;            % propagation from 0 to zmax (m) 
iterations        = 200;              % number of z points to take 
 
deltat=2*tmax/pointt;                 % step along t 
deltaz=zmax/(iterations);             % step along z  
 
% 
% Simulation and material parameters 
% 
n2 = linspace(0.3e-17, 0.5e-17, numruns); 
 
params=[]; 
for i=1:numruns 
  params(i).runnum      = i; 
  params(i).lambda      = lambda;     % Center wavelength (m) 
  params(i).beta2       = 0.981e-24;  % GVD (m^-1 s^2) 
  params(i).beta3       = 0;          % Third-order dispersion (m^-1 s^3) 
  params(i).n2          = 0.42e-17;   % Kerr coefficient (m^2/Watt) 
  params(i).Aeff        = 7.84e-12;   % effective area (m^2) 
  params(i).Aeff5       = 6.5e-12;    % fifth-order effective area (m^2) 
  params(i).steep_on    = 1;          % 1 to include self-steepening effect 
  params(i).raman_on    = 0;          % 1 to include Raman effect 
  params(i).Tr          = 0;          % slope of Raman gain (s) 
  params(i).alpha       = 7.2e2;      % Linear loss coefficient (m^-1) 
  params(i).alpha2      = 0;          % 2-photon absorption (m Watt^-1) 
  params(i).alpha3      = 1.58e-26;   % 3-photon absorption (m^3 Watt^-2) 
  params(i).iterations  = iterations; % number of iterations along z 
  params(i).numplots    = 1;          % number of points along z to return 
  params(i).reportpnts  = 100;        % Number of points to report on-screen 
  params(i).deltat      = deltat;     % temporal step interval (s) 
  params(i).deltaz      = deltaz;     % spatial step interval (m) 
end; 
 
 
% 
% Input Pulse 
% 
pwr     = linspace(1,3000,numruns);         % Peak power (W) 
%pwr      = repmat([2035],1,numruns); 
FWHM    = 173e-15;                          % Full width half maximum (s) 
C       = 0.6;                              % chirp 
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tshift  = 0; %-0.6*FWHM/1.665; 
factor  = 0;  % 0.2; 
m       = 1.2;                              % Super-gaussian factor 
 
t = -tmax : deltat : tmax*(2*zeropadfact-1)-deltat; 
q = gaussian(FWHM, 1, t, C, tshift, factor, m); 
%q = sechpulse(FWHM, 1, t, C); 
 
% 
% Run Simulation 
% 
for i=1:numruns 
  qout=[]; 
  z=[]; 
  qin=q.*sqrt(pwr(i)); 
  qout=[qout qin]; 
  [qout, z, t_elapsed] = bpmgnlse(params(i), qin); 
  % 
  % Save Results 
  % 
  filename = [filepath,'/',dataset,'_',num2str(i,'%.4u')]; 
  save(filename); 
  fid = fopen([filename,'.txt'], 'w'); 
  datetime = datestr(now, 'yyyy-mm-dd-HHhMM.SS') 
  fprintf(fid, '**GNLSE BPM SIMULATION PARAMETERS**\n'); 
  fprintf(fid, 'Date/Time run: %s\n', datetime); 
  fprintf(fid, 'Simulation time: %d\n\n', t_elapsed); 
  fprintf(fid, 'Description:\n%s\n\n', description); 
  fclose(fid); 
end; 
 
 

bpmxpm.m 

function [qout_pm, qout_pb, z, t_elapsed] = bpmxpm(params, qin_pm, qin_pb) 
%   
% 1-D BPM code (time domain) for chi3 (Kerr) nonlinear materials with XPM.  
% 
% Dispersion (beta2,beta3), Kerr nonlinearity, TPA, 
% self-steepening, Raman effect, cross-phase modulation (XPM). 
% 
% Note: This simulation is only for probe and pump at same wavelength, but 
%       different polarization. 
% 
% March 23, 2005 
% Sean Wagner 
% Department of Electrical and Computer Engineering 
% University of Toronto 
% 
% Based on code bpm_chi3.m orginally written by D. Modotto 
% 
% $Id: bpmxpm.m,v 1.1 2006/03/23 22:27:07 Sean Exp $ 
% 
% USAGE: 
% 
% Submit a structure (param) with the following fields and proper 
% units: 
% 
% params.runnum     - Run number 
% params.lambda_pm  - Center wavelength (m) for PUMP 
% params.lambda_pb  - Center wavelength (m) for PROBE 
% params.beta1_pm   - First-order dispersion (m^-1 s) for PUMP 
% params.beta1_pb   - First-order dispersion (m^-1 s) for PROBE 
% params.beta2_pm   - GVD (m^-1 s^2) for PUMP 
% params.beta2_pb   - GVD (m^-1 s^2) for PROBE 
% params.beta3_pm   - Third-order dispersion (m^-1 s^3) for PUMP 
% params.beta3_pb   - Third-order dispersion (m^-1 s^3) for PROBE 
% params.n2_pm      - Kerr coefficient (m^2/Watt) for PUMP 
% params.n2_pb      - Kerr coefficient (m^2/Watt) for PROBE 
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% params.xn2_pm     - Cross Kerr coefficient (m^2/Watt) for PUMP 
% params.xn2_pb     - Cross Kerr coefficient (m^2/Watt) for PROBE 
% params.Aeff_pm    - Waveguide effective area (m^2) for PUMP 
% params.Aeff_pb    - Waveguide effective area (m^2) for PROBE 
% params.steep_on   - 1 to include self-steepening effect 
% params.raman_on   - 1 to include Raman effect 
% params.Tr_pm      - slope of Raman gain (s) for PUMP 
% params.Tr_pb      - slope of Raman gain (s) for PROBE 
% params.alpha_pm   - Linear loss coefficient (m^-1) for PUMP 
% params.alpha_pb   - Linear loss coefficient (m^-1) for PROBE 
% params.alpha2_pm  - 2-photon absorption coefficient (m Watt^-1) for PUMP 
% params.alpha2_pb  - 2-photon absorption coefficient (m Watt^-1) for PROBE 
% params.iterations - number of iterations along z 
% params.numplots   - number of points along z to return 
% params.reportpnts - number of points along z to report on screen 
% params.deltat     - temporal step interval (s) 
% params.deltaz     - spatial step interval (m) 
% qin_pm            - PUMP input 
% qin_pb            - PROBE input 
% 
% RETURNS 
% qout_pm           - complex field envelope over t and z for PUMP 
% qout_pb           - complex field envelope over t and z for PROBE 
% z                 - vector of z coordinates (m) 
% telapsed          - calcuation time (s) 
% 
 
% 
% Constants 
% 
j=sqrt(-1);   % imaginary unit 
c=299792458;  % velocity of light (m s^-1) 
 
% 
% Constant parameters for calculations 
% 
runnum = params.runnum;         % Run number 
lambda_pm = params.lambda_pm;   % Center wavelength (m) 
lambda_pb = params.lambda_pb;   % Center wavelength (m) 
beta1_pm = params.beta1_pm;     % First-order dispersion (m^-1 s) PUMP 
beta1_pb = params.beta1_pb;     % First-order dispersion (m^-1 s) PROBE 
beta2_pm = params.beta2_pm;     % GVD (m^-1 s^2) PUMP 
beta2_pb = params.beta2_pb;     % GVD (m^-1 s^2) PROBE 
beta3_pm = params.beta3_pm;     % Third-order dispersion (m^-1 s^3) PUMP 
beta3_pb = params.beta3_pb;     % Third-order dispersion (m^-1 s^3) PROBE 
n2_pm = params.n2_pm;           % Kerr coefficient (m^2/Watt) PUMP 
n2_pb = params.n2_pb;           % Kerr coefficient (m^2/Watt) PROBE 
xn2_pm = params.xn2_pm;         % Cross Kerr coefficient (m^2/Watt) PUMP 
xn2_pb = params.xn2_pb;         % Cross Kerr coefficient (m^2/Watt) PROBE 
Aeff_pm = params.Aeff_pm;       % Waveguide effective area (m^2) PUMP 
Aeff_pb = params.Aeff_pb;       % Waveguide effective area (m^2)  PROBE 
steep_on = params.steep_on;     % 1 to include self-steepening effect 
raman_on = params.raman_on;     % 1 to include Raman effect 
Tr_pm = params.Tr_pm;           % slope of Raman gain (s) PUMP 
Tr_pb = params.Tr_pb;           % slope of Raman gain (s) PROBE 
alpha_pm = params.alpha_pm;     % Linear loss coefficient (m^-1) PUMP 
alpha_pb = params.alpha_pb;     % Linear loss coefficient (m^-1)  PROBE 
alpha2_pm = params.alpha2_pm;   % 2-photon absorption  (m Watt^-1) PUMP 
alpha2_pb = params.alpha2_pb;   %- 2-photon absorption (m Watt^-1) PROBE 
xalpha2_pm = params.alpha2_pm;  %- cross 2-photon absorption (m Watt^-1) PUMP 
xalpha2_pb = params.alpha2_pb;  %- cross 2-photon absorption (m Watt^-1) PROBE 
iterations = params.iterations; %- number of iterations along z 
numplots = params.numplots;     %- number of points along z to return 
reportpnts = params.reportpnts; %- number of points along z to report on screen 
deltat = params.deltat;         %- temporal step interval (s) 
deltaz = params.deltaz;         %- spatial step interval (m) 
 
 
%---------------------------------------------------- 
%---------------------------------------------------- 
tic; 
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gamma_pm=(2*pi/lambda_pm)*(n2_pm/Aeff_pm);  % nonlinear parameter for PUMP 
gamma_pb=(2*pi/lambda_pb)*(n2_pb/Aeff_pb);  % nonlinear parameter for PROBE 
xgamma_pm=(2*pi/lambda_pb)*(xn2_pb/Aeff_pb); 
xgamma_pb=(2*pi/lambda_pm)*(xn2_pm/Aeff_pm); 
d=beta1_pb-beta1_pm; 
njump=iterations/numplots; 
nreport=iterations/reportpnts; 
pointt=length(qin_pm); 
%  vectors 
indfreq=-pointt/2:1:pointt/2-1;   % frequencies of the numerical algorithm 
omega=(pi./(pointt*deltat)).*indfreq; 
% dispersion in frequency domain PUMP 
prop_pm=(beta2_pm/2)*(omega.^2)-(beta3_pm/6)*(omega.^3); 
% dispersion in frequency domain PROBE 
prop_pb=-d.*omega+(beta2_pb/2)*(omega.^2)-(beta3_pb/6)*(omega.^3); 
qout_pm=[]; 
qout_pb=[]; 
qout_pm=[qout_pm qin_pm']; 
qout_pb=[qout_pb qin_pb']; 
z=[]; 
z=[z 0]; 
q_pm=qin_pm; 
q_pb=qin_pb; 
 
% 
% MAIN PROGRAM 
% 
for loop_step=1:1:params.iterations 
% 
% FFT and (HALF) linear step 
  qs_pm=deltat*fftshift(fft(q_pm));   % FFT of PUMP 
  qs_pb=deltat*fftshift(fft(q_pb));   % FFT of PROBE 
  fact_pm=j.*prop_pm.*0.5*deltaz; 
  fact_pb=j.*prop_pb.*0.5*deltaz; 
  qs_pm=exp(fact_pm).*qs_pm;          % propagation in frequency domain for PUMP 
  qs_pb=exp(fact_pb).*qs_pb;          % propagation in frequency domain for PROBE 
  qs_pm_old=qs_pm; 
  qs_pb_old=qs_pb; 
  q_pm=(1/deltat)*ifft(ifftshift(qs_pm));   % iFFT of PUMP 
  q_pb=(1/deltat)*ifft(ifftshift(qs_pb));   % iFFT of PROBE 
  q_pm_save=q_pm; 
  q_pb_save=q_pb; 
% self-steepening (in the frequency domain) 
  if steep_on==1 
    steepening_pm=deltat*fftshift(fft((abs(q_pm).^2).*q_pm)); 
    steepening_pb=deltat*fftshift(fft((abs(q_pb).^2).*q_pb)); 
    qs_pm=qs_pm-(n2_pm/(Aeff_pm*c))*(j*2*omega).*steepening_pm*deltaz;  
    qs_pb=qs_pb-(n2_pb/(Aeff_pb*c))*(j*2*omega).*steepening_pb*deltaz; 
  end 
% Raman  
  if raman_on==1 
    term_fft_pm=deltat*fftshift(fft(abs(q_pm).^2)); 
    term_fft_pb=deltat*fftshift(fft(abs(q_pb).^2)); 
    convolution_pm=(1/(deltat*pointt))*conv(qs_pm_old,j*omega.*term_fft_pm); 
    convolution_pb=(1/(deltat*pointt))*conv(qs_pb_old,j*omega.*term_fft_pb); 
    convolution_pm=convolution_pm(pointt/2+1:1:pointt/2+pointt); 
    convolution_pb=convolution_pb(pointt/2+1:1:pointt/2+pointt); 
    qs_pm=qs_pm-j*gamma_pm*Tr_pm*convolution_pm*deltaz; 
    qs_pb=qs_pb-j*gamma_pb*Tr_pb*convolution_pb*deltaz; 
  end 
% IFFT (back in the time domain)  
  q_pm=(1/deltat)*ifft(ifftshift(qs_pm)); 
  q_pb=(1/deltat)*ifft(ifftshift(qs_pb)); 
% nonlinear step (Kerr effect) 
  q_pm=q_pm.*exp(j*(gamma_pm*abs(q_pm).^2+xgamma_pm*abs(q_pb_save).^2).*deltaz); 
  q_pb=q_pb.*exp(j*(gamma_pb*abs(q_pb).^2+xgamma_pb*abs(q_pm_save).^2).*deltaz); 
% linear and nonlinear losses    
  q_pm=q_pm.*exp(-0.5*(alpha_pm+(alpha2_pm/Aeff_pm)*abs(q_pm).^2+(xalpha2_pm/Aeff_pb) ... 
    *abs(q_pb).^2).*deltaz); 
  q_pb=q_pb.*exp(-0.5*(alpha_pb+(alpha2_pb/Aeff_pb)*abs(q_pb).^2+(xalpha2_pb/Aeff_pm) ... 
    *abs(q_pm).^2).*deltaz); 
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% FFT and (HALF) linear step 
  qs_pm=deltat*fftshift(fft(q_pm)); % FFT 
  qs_pb=deltat*fftshift(fft(q_pb)); % FFT 
  fact_pm=j.*prop_pm.*0.5*deltaz; 
  fact_pb=j.*prop_pb.*0.5*deltaz; 
  qs_pm=exp(fact_pm).*qs_pm;       % propagation in the frequency domain  
  qs_pb=exp(fact_pb).*qs_pb;       % propagation in the frequency domain  
% IFFT (back in the time domain)   
  q_pm=(1/deltat)*ifft(ifftshift(qs_pm)); 
  q_pb=(1/deltat)*ifft(ifftshift(qs_pb)); 
% Record along z 
  if rem(loop_step,nreport)==0 
    runnum 
    loop_step 
    qsqrd_pm = abs(q_pm).^2; 
    qsqrd_pb = abs(q_pb).^2; 
    calculated_energy_pm=deltat*sum(qsqrd_pm)  
    calculated_energy_pb=deltat*sum(qsqrd_pb)  
  end 
  if rem(loop_step,njump)==0  % if loop_step multiple of njump, saves results 
    qsqrd_pm = abs(q_pm).^2; 
    qsqrd_pb = abs(q_pb).^2; 
    qout_pm=[qout_pm q_pm']; 
    qout_pb=[qout_pb q_pb']; 
    zeta=loop_step*deltaz ; 
    z=[z zeta];  
  end  
end; 
t_elapsed = toc 
 
 

bpmxpm_batch.m 

 
%   
% BPM XPM Batch 
% Runs a series of 1-D BPM simulations using bpmxpm.m 
% 
% March 23, 2006 
% Sean Wagner 
% Department of Electrical and Computer Engineering 
% University of Toronto 
% 
% Based on code bpm_chi3.m orginally written by D. Modotto 
% 
% $Id:$ 
% 
% USAGE: 
% 
% Submit a structure (param) with the following fields and proper 
% units: 
% 
% params.runnum         - Run number 
% params.lambda_pm      - Center wavelength (m) for PUMP 
% params.lambda_pb      - Center wavelength (m) for PROBE 
% params.beta1_pm       - First-order dispersion (m^-1 s) for PUMP 
% params.beta1_pb       - First-order dispersion (m^-1 s) for PROBE 
% params.beta2_pm       - GVD (m^-1 s^2) for PUMP 
% params.beta2_pb       - GVD (m^-1 s^2) for PROBE 
% params.beta3_pm       - Third-order dispersion (m^-1 s^3) for PUMP 
% params.beta3_pb       - Third-order dispersion (m^-1 s^3) for PROBE 
% params.n2_pm          - Kerr coefficient (m^2/Watt) for PUMP 
% params.n2_pb          - Kerr coefficient (m^2/Watt) for PROBE 
% params.B_pm           - SPM/XPM ratio for PROBE on PUMP 
% params.B_pb           - SPM/XPM ratio for PUMP on PROBE 
% params.Aeff_pm        - Waveguide effective area (m^2) for PUMP 
% params.Aeff_pb        - Waveguide effective area (m^2) for PROBE 
% params.steep_on       - 1 to include self-steepening effect 
% params.raman_on       - 1 to include Raman effect 
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% params.Tr_pm          - slope of Raman gain (s) for PUMP 
% params.Tr_pb          - slope of Raman gain (s) for PROBE 
% params.alpha_pm       - Linear loss coefficient (m^-1) for PUMP 
% params.alpha_pb       - Linear loss coefficient (m^-1) for PROBE 
% params.alpha2_pm      - 2-photon absorption coefficient (m Watt^-1) for PUMP 
% params.alpha2_pb      - 2-photon absorption coefficient (m Watt^-1) for PROBE 
% params.iterations     - number of iterations along z 
% params.numplots       - number of points along z to return 
% params.reportpnts     - number of points along z to report on screen 
% params.deltat         - temporal step interval (s) 
% params.deltaz         - spatial step interval (m) 
% 
% 
 
clear all 
 
% 
% Constants 
% 
j=sqrt(-1);   % imaginary unit 
c=299792458;  % velocity of light (m s^-1) 
 
% 
% Description 
% 
description = 'Superlattice as-grown, TE pump, TM probe, WG31, 1545nm with XTPA'; 
filepath    = '.\results\2006\07 2006\0507'; 
dataset     = 'dataset03'; 
scantype    = 'pwr'; 
 
% 
% Setup results directory 
 
system(['mkdir "', filepath, '"']) 
 
% 
% Batch run parameters 
% 
numruns     = 21;                     % Number of runs to do 
 
 
% 
% Temporal and spatial paramters 
% 
lambda_pm         = 1544.95e-9;         % center wavelength (m) 
lambda_pb         = 1544.95e-9;         % center wavelength (m) 
pointt            = 2^12;             % number of points along t (time) 
zeropadfact       = 2^2;              % zero padding factor 
tmax              = 8e-12;            % temporal window from -tmax to tmax (s) 
zmax              = 0.012;            % propagation from 0 to zmax (m) 
iterations        = 400;              % number of z points to take 
 
deltat=2*tmax/pointt;                 % step along t 
deltaz=zmax/(iterations);             % step along z  
 
% 
% Simulation and material parameters 
% 
n2 = linspace(1.1e-17, 1.3e-17, numruns); 
 
params=[]; 
for i=1:numruns 
  params(i).runnum      = i; 
  params(i).lambda_pm   = lambda_pm;   % Center wavelength (m) for PUMP 
  params(i).lambda_pb   = lambda_pb;   % Center wavelength (m) for PROBE 
  params(i).beta1_pm    = 10.767e-9;   % First-order dispersion (m^-1 s) for PUMP 
  params(i).beta1_pb    = 10.695e-9;   % First-order dispersion (m^-1 s) for PROBE 
  params(i).beta2_pm    = 0.728e-24;   % GVD (m^-1 s^2) for PUMP 
  params(i).beta2_pb    = 0.622e-24;   % GVD (m^-1 s^2) for PROBE 
  params(i).beta3_pm    = 0;           % Third-order dispersion (m^-1 s^3) for PUMP 
  params(i).beta3_pb    = 0;           % Third-order dispersion (m^-1 s^3) for PROBE 

 135



  params(i).n2_pm       = 2.52e-17;    % Kerr coefficient (m^2/Watt) for PUMP 
  params(i).n2_pb       = 1.16e-17;    % Kerr coefficient (m^2/Watt) for PROBE 
  params(i).xn2_pm      = 0.98e-17;    % Cross Kerr coefficient (m^2/Watt) for PUMP 
  params(i).xn2_pb      = 0;           % Cross Kerr coefficient (m^2/Watt) for PROBE 
  params(i).Aeff_pm     = 7.44e-12;    % Waveguide effective area (m^2) for PUMP 
  params(i).Aeff_pb     = 9.85e-12;    % Waveguide effective area (m^2) for PROBE 
  params(i).steep_on    = 0;           % 1 to include self-steepening effect 
  params(i).raman_on    = 0;           % 1 to include Raman effect 
  params(i).Tr_pm       = 0;           % slope of Raman gain (s) for PUMP 
  params(i).Tr_pb       = 0;           % slope of Raman gain (s) for PROBE 
  params(i).alpha_pm    = 0.24e2;      % Linear loss coefficient (m^-1) for PUMP 
  params(i).alpha_pb    = 0.59e2;      % Linear loss coefficient (m^-1) for PROBE 
  params(i).alpha2_pm   = 14.5e-12;    % 2-photon absorption  (m Watt^-1) for PUMP 
  params(i).alpha2_pb   = 5.32e-12;    % 2-photon absorption  (m Watt^-1) for PROBE 
  params(i).xalpha2_pm  = 0;           % cross 2-photon absorption  (m Watt^-1) for PUMP 
  params(i).xalpha2_pb  = 6.366e-12;   % cross 2-photon absorption  (m Watt^-1) for PROBE 
  params(i).iterations  = iterations;  % number of iterations along z 
  params(i).numplots    = 1;           % number of points along z to return 
  params(i).reportpnts  = 100;         % Number of points to report on-screen 
  params(i).deltat      = deltat;      % temporal step interval (s) 
  params(i).deltaz      = deltaz;      % spatial step interval (m) 
end; 
 
 
% 
% Input Pulse 
% 
pwr_pm  = linspace(1,300,numruns);  % Peak power (W) for PUMP 
%pwr_pm = repmat([157],1,numruns); 
pwr_pb  = 0.078.*pwr_pm;            % Peak power (W) for PROBE 
FWHM    = 1.35e-12;                 % Full width half maximum (s) 
C       = 0.2;                      % chirp 
tshift  = 0; %-0.6*FWHM/1.665; 
factor  = 0;  % 0.2; 
m       = 1.0;                      % Super-gaussian factor 
 
t = -tmax : deltat : tmax*(2*zeropadfact-1)-deltat; 
q_pm = gaussian(FWHM, 1, t, C, tshift, factor, m); 
q_pb = gaussian(FWHM, 1, t, C, tshift, factor, m); 
%q_pm = sechpulse(FWHM, 1, t, C); 
%q_pb = sechpulse(FWHM, 1, t, C); 
 
% 
% Run Simulation 
% 
for i=1:numruns 
  qout_pm=[]; 
  qout_pb=[]; 
  z=[]; 
  qin_pm=q_pm.*sqrt(pwr_pm(i)); 
  qin_pb=q_pb.*sqrt(pwr_pb(i)); 
  qout_pm=[qout_pm qin_pm]; 
  qout_pb=[qout_pb qin_pb]; 
  [qout_pm, qout_pb, z, t_elapsed] = bpmxpm(params(i), qin_pm, qin_pb); 
  % 
  % Save Results 
  % 
  filename = [filepath,'\',dataset,'_',num2str(i,'%.4u')]; 
  save(filename); 
  fid = fopen([filename,'.txt'], 'w'); 
  datetime = datestr(now, 'yyyy-mm-dd-HHhMM.SS') 
  fprintf(fid, '**GNLSE BPM XPM SIMULATION PARAMETERS**\n'); 
  fprintf(fid, 'Date/Time run: %s\n', datetime); 
  fprintf(fid, 'Simulation time: %d\n\n', t_elapsed); 
  fprintf(fid, 'Description:\n%s\n\n', description); 
  fclose(fid); 
end; 
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