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We present a theoretical description of slab and ridge waveguides with multilayer claddings, such as
Bragg reflection waveguides (BRWs), using analytical expressions based on Fresnel and Airy formulas.
This approach simplifies the waveguide calculations in comparison with more traditional techniques
such as the transfer matrix method or direct stitching of plane-wave solutions at layer interfaces.
Approximate but simple and straightforward analytic relations describing the effective indices and group
velocities of guided modes in arbitrary 1D BRWs are derived. The formalism is then extended to 2D ridge
waveguides using the effective index method. The approach is employed to engineer BRWs where
several types of phase matching are present simultaneously at the same wavelength, as well as BRWs
where photons generated by spontaneous parametric downconversion have the maximal degree of
polarization entanglement. These results promote the use of BRWs as on-chip entangled photon sources,
and facilitate on-chip generation of multiple optical Bell states. The designs are based on the AlGaAs
fabrication platform and are within reach of experimental realization.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Waveguides carrying optical signals between functional ele-
ments of an integrated optical circuit are as basic to its functioning
as conductive wires are to a microelectronic chip [1,2]. Moreover,
waveguides form a basis for the design of functional elements
themselves. This can be achieved either by altering the geometry
of a waveguide, forming devices such as bottleneck-type [3] and
microring-type resonators, add-drop filters, or directional couplers
[4], or else by using the advanced functionality of the waveguide
materials, such as nonlinear optical, electro-/magnetooptical, or
gain effects. In particular, nonlinear optical waveguides can enable
on-chip implementation of processes such as nonlinear frequency
conversion, optical parametric oscillation, spontaneous four-wave
mixing (SWFM), and spontaneous parametric downconversion
(SPDC). The latter two are capable of producing entangled photons
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and other nonclassical states of light, which is a primary objective
in quantum photonics [5,6].

To make full use of SPDC in integrated optical waveguides for
the production of photons with a desired spectrum, polarization,
and entanglement, there is a need to control both phase matching
(PM) and mode dispersion. A highly promising approach is
provided by making the waveguide support modes with two
distinct guiding mechanisms, such as total internal reflection
(TIR) for lower-frequency (downconverted) modes and Bragg
reflection for higher-frequency (pump) modes [7]. Such structures,
known as Bragg reflection waveguides [BRWs, see Fig. 1(a)], have
been extensively investigated in the past five years. Both nonlinear
frequency conversion [8–10] and SPDC [11–14] were theoretically
predicted and experimentally demonstrated. It was shown that
independent guiding mechanisms for TIR and Bragg modes make
for a rich variety of possible PM types [13,15,16]. As a result, a
single BRW-based source can generate differently polarized
entangled photons, which is very promising because such a source
has a potential of generating multiple orthogonal Bell states of two
entangled photons [17]. These states form a complete basis and
produce maximal violations of the Bell inequality, and are there-
fore widely used in quantum information science [18]. The
complete set of Bell states can already be generated by a single
SPDC process using post-chip compensation [18,19]. Still, an
on-chip switchable source of multiple Bell states, integrated
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Fig. 1. Schematic of (a) a 2D ridge BRW (showing type-II SPDC). An enlarged view of a slab waveguide (b) without and (c) with refractive index modulation (Bragg mirror) in
the cladding. Geometrical and material parameters used throughout the paper are shown.
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with quantum-interference circuits [5,20,21], would bring many
quantum optical experiments from an optical table to an optical
chip, constituting a major breakthrough in photonic quantum
technology [22].

The cladding of a BRW is essentially a periodic dielectric
multilayer structure operating in the photonic band gap (PBG)
regime, which provides total reflection only in the limit of an
infinite number of periods. For actual claddings, a common way to
minimize radiation losses is to design the cladding to operate
exactly in the middle of the PBG by fulfilling the quarter-wave
(QW) condition. Extensive theoretical investigations of such QW-
BRWs have been performed [15,23,24]. It has been shown that
significant mode dispersion control can be achieved by varying the
core thickness [24] and ridge width [11].

However, while QW-BRWs represent an obvious starting point
in a theoretical description of waveguides with multilayer clad-
dings, they are certainly not the only possibility. It was shown
recently that second-harmonic generation in BRWs can be drama-
tically increased by using a structured core rather than a single-
layer core [10]. Additionally, varying the structured core composi-
tion can significantly alter the dispersion characteristics of all
modes as well as the strength of the nonlinear mode interaction
[25]. Furthermore, intentional departure from the QW condition
can lead to simultaneous PM of more than one type; when used in
SPDC, this leads to the generation of photon pairs entangled in a
controllable number of degrees of freedom [26]. Finally, the PBG
phenomenon is by no means unique to purely periodic systems,
and it is highly likely that using a different cladding structure
would change the characteristics of Bragg modes while having
minimal influence over TIR modes.

Although the theory of multilayer structures is straightforward,
and the set of modes supported by any multilayer-cladding wave-
guide can be easily determined with efficient numerical methods,
the reverse problem, i.e., designing a waveguide to support a
particular set of modes, is much more difficult and still largely open.
The reason is that the equations describing even a simple slab
dielectric waveguide are transcendental, and do not lend themselves
to an exact analytical solution. The problem becomes increasingly
more difficult when complex multilayer claddings are considered,
and the design of structures that would suit a particular purpose is
often a tedious process involving multiple-parameter optimization,
sometimes even employing genetic algorithms [27].
It is therefore useful to develop analytical methods capable of
predicting the behavior of multilayer waveguides, such as BRWs,
prior to reverting to full numerical simulations and without having
to make restrictive assumptions such as the QW condition. In this
paper, we present such an analytical approach using a combina-
tion of Fresnel and recurrent Airy formulas applied to multilayer
claddings of slab and ridge waveguides. We show that it is often
possible to construct approximate but simple and straightforward
analytical expressions describing the effective indices and group
velocities of TIR and Bragg modes in arbitrary slab BRWs. In
comparison to the more traditional transfer matrix methods or
direct stitching of solutions of Maxwell's equation at layer inter-
faces [23,24], these expressions simplify the calculations involving
multilayer waveguides, especially when inverse problems are
involved. We also show that the effective index method can be
readily used to extend the analytical formalism to 2D ridge
waveguides for a wide range of waveguide parameters.

We demonstrate the approach by proposing several designs of
BRWs where two or three distinct PM types are present simulta-
neously at the same pump wavelength, enriching the degree of
polarization-driven control over nonlinear frequency conversion
processes. We also propose several designs of BRWs for SPDC
processes where the generated photon pairs have the maximal
degree of polarization entanglement. Such BRW structures could
serve as on-chip sources of entangled photons and optical Bell
states. The results obtained are specifically tailored to the struc-
tures epitaxially grown on the AlGaAs platform, and are suitable
for experimental realization.

The paper is organized as follows. In Section 2 the theoretical
framework is presented. Slab dielectric waveguides, Bragg reflec-
tion waveguides, and 2D ridge waveguides with multilayer clad-
dings are investigated. In Section 3, the approach is used to model
several example devices suitable for simultaneous nonlinear
frequency conversion and SPDC through multiple PM types. In
Section 4 we combine our approach with a previously developed
Hamiltonian formalism [28,29] to propose several model devices
suitable for on-chip generation of co-polarized and cross-polarized
polarization entangled photons, where the entanglement is not
compromised by the difference in spectral properties of diffe-
rently polarized downconverted photons. The improved quality of
the polarization entanglement is numerically demonstrated in
the calculation of the predicted results for standard quantum
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interference experiments. Finally, in Section 5 the main results of
the paper are summarized.
2. Theoretical description

2.1. Fresnel and Airy formulas for multilayer structures

We first introduce the formalism and briefly review several
background points that will be used throughout the paper. Con-
sider a multilayer system which is homogeneous in the x and z
directions but is piecewise homogeneous in the y direction [Fig. 1
(b,c)]. Each constituent layer is a homogeneous mediumwhere the
solutions of Maxwell's equations can have plane-wave form

Eðr; tÞ ¼ Eeik�re−iωt þ c:c: ð1Þ
In a homogeneous isotropic medium with refractive index n, the
wave vector k is related to the frequency ω through the dispersion
relation,

k2−ðω=cÞ2n2 ¼ 0: ð2Þ
Since all layer interfaces are planes with y fixed, it is convenient to
decompose [Fig. 1(b)]

k¼ kxx̂ þ kzẑ þ kyŷ ¼ κ7wŷ ; ð3Þ
where kx and kz are taken to be real. Here κ is the component of
the wave vector tangential to all layer interfaces; for any multi-
layer system, its value will be the same across all layers. For a wave
that can propagate in some direction along the ðx−zÞ plane, we call
κ¼ jκj its propagation constant, and neff ¼ ðc=ωÞκ is commonly
defined as its effective index. The other, normal component of the
wave vector 7wŷ has its magnitude w given by Eq. (2):

w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−κ2

q
¼ ðω=cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2−n2

eff

q
; ð4Þ

which, expectedly, is real only if neff ≤n, which is the existence
condition of plane waves in a homogeneous medium. In general,
the expression under the square root in Eq. (4) can be complex;
the square root is chosen in such a way that Im w≥0, and if
Im w¼ 0, then we take Re w≥0.

Now consider a plane interface between two such media [Fig. 1(b)]
with refractive indices ni and nj. Writing the plane wave solutions in
Fig. 2. Comparison between fundamental-mode effective index nTE
eff obtained by numer

varying core thickness and (b) with varying core/cladding refractive index contrast for
show the relative error between analytical and numerical calculations.
the form (1) in eachmedium and using the boundary conditions at the
interface to stitch these solutions together, the reflection and trans-
mission coefficients of plane waves at the interface are found to be
given by the well-known Fresnel formulas [30]

rTEij ¼ wi−wj

wi þwj
; rTMij ¼

win2
j −win2

j

win2
j þwin2

j

; ð5Þ

tTEij ¼ 2wi

wi þwj
; tTMij ¼ 2wininj

win2
j þwin2

j

; ð6Þ

where

wi;j ¼ ðω=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
i;j−n

2
eff

q
: ð7Þ

The coefficients rij and tij are dependent onwhether the field is TE- (s-)
polarized or TM- (p-) polarized; these polarization states can be
considered separately in plane-parallel geometries [31]. For
njoneff oni, wi is real and wj is purely imaginary, resulting in
jrijj ¼ 1 and signifying the case of total internal reflection, with the
wave evanescent in the medium j.

Finally, consider one layer of refractive index nc and thickness
tc, sandwiched between media with refractive indices ni and nj. We
can write the reflection and transmission coefficients of such a
structure in the form of Airy formulas

RðcÞ
ij ¼ ric þ

ticrcjtcie2iwctc

1−rcircje2iwctc
¼ rcið−1þ e2iwctc Þ

1−rcircje2iwctc
; ð8Þ

T ðcÞ
ij ¼ tictcjeiwctc

1−rcircje2iwctc
: ð9Þ

Like the Fresnel interface coefficients of Eqs. (5) and (6), RðcÞ
ij and

T ðcÞ
ij are different for TE- and TM-polarized waves.

2.2. Simple slab waveguides: mode effective indices

The dielectric multilayer systems we consider will support a
guided mode with the effective index neff if in some layers it has a
real-valued w whereas in the surrounding layers w is imaginary,
confining the wave in the y-direction. The simplest system of that
kind is a symmetric slab waveguide where the core layer has
refractive index nc and thickness tc, surrounded by an outer
ically solving Eq. (10) and analytically from Eq. (16) for a slab waveguide: (a) with
λ¼ 1550 nm and nc ¼ 3:0; the remaining parameters are as marked. Bottom plots
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cladding with index noonc [Fig. 1(b)]. Modes can be guided in the
core due to the total internal reflection (TIR) if nooneff onc .

The standard approach to determine the values of neff for
which waveguiding is possible consists in using the boundary
conditions at layer interfaces to stitch together the plane-wave
solution of Maxwell's equations in each layer, and then solving the
eigenvalue equation for neff [32]. An alternative approach is to look
for conditions when the reflection and transmission coefficients in
Eqs. (8) and (9) diverge, indicating the presence of reflected and
transmitted fields in the absence of an incident wave [33]. This can
be obtained if there is a pole in Eqs. (8) and (9) [34,35], i.e.,

1−r2co expð2iwctcÞ ¼ 0; ð10Þ

where rco for each polarization is given by Eqs. (5) and (6) and wc;o

are determined from Eq. (7). If nooneff onc; we see that wc≡hcω=c
is real while wo≡ihoω=c is imaginary, so jrcoj ¼ 1 as expected for
TIR modes. The quantities hc and ho are introduced for brevity of
notation and equal

hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
c−n2

eff

q
; ho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
eff−n

2
o

q
: ð11Þ

Since jrcoj ¼ 1, putting rco ¼ expðiδrÞ we can rewrite Eq. (10) as

exp½ið2δr þ 2wctcÞ� ¼ 1; ð12Þ

from where, after some algebra [36], it follows that the effective
indices of TE-polarized guided modes are determined by a set of
transcendental equations

cos x
x

¼ 7
1
V
;

sin x
x

¼ 7
1
V
; ð13Þ

where x¼wctc=2, and

V ¼ ω

c
tc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
c−n2

o

q
ð14Þ

can be viewed as the “strength of the waveguide potential” [36].
For the fundamental mode, which corresponds to the smallest

root of the cosine equation in (13), we can Taylor expand the
cosine for small x, yielding:

cos x
x

¼ 1
x
−
x
2
þ Oðx3Þ; ð15Þ
Fig. 3. Comparison between Δneff obtained by numerically solving Eq. (10) and analytica
varying core/cladding refractive index contrast for λ¼ 1550 nm and nc ¼ 3:0; the rem
analytical and numerical calculations.
which results in an approximate analytic expression for the funda-
mental-mode nTE

eff :

nTE
eff≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
c−

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 V2 þ 1

p
−1Þ=V

ωtc=ð2cÞ

" #2
vuut : ð16Þ

Fig. 2 compares this analytic expression with the numeric result of
solving Eq. (13) for a slab waveguide with the core refractive index
nc ¼ 3:0 and varying core thickness and cladding refractive index.
We see that Eq. (16) correctly reproduces the effective index of the
fundamental TE mode to within 1% accuracy over a wide range of
waveguide parameters.

To determine the index splitting Δneff between the TE- and TM-
polarized modes, we rewrite Eqs. (5) in the form

δTEr ¼ arctan
−2hcho

n2
c þ n2

o−2n2
eff

; ð17Þ

δTMr ¼ arctan
−2hcho

n2
c þ n2

o−
n4
c þ n4

o

n2
c n2

o
n2
eff

: ð18Þ

Since ðn4
c þ n4

oÞ=ðn2
c n

2
oÞ≳2, we can Taylor expand δr to obtain the

approximate value of

Δneff ¼ nTM
eff −n

TE
eff≈

2ðnTE
eff Þ2

n2
on2

c
hTEc hTEo

∂δTEr
∂neff

−
ω

c
nTE
eff tc
hTEc

: ð19Þ

The effective index nTE
eff of a TE-polarized mode can be obtained

either numerically by solving Eq. (10) or, for the case of funda-
mental mode, analytically from Eq. (16). Once nTE

eff is found, Eq. (19)
can be used to obtain the effective index nTM

eff of a corresponding
TM-polarized mode. Fig. 3 demonstrates that Eq. (19) is accurate to
within 5–10% for typical slab waveguides with index contrast
nc−no not exceeding 0.5 and core thickness over 100 nm.

2.3. Simple slab waveguides: group velocities

The group velocity of a guided mode

vg ¼ c neff þ ω
dneff

dω

� �−1
; ð20Þ
lly from Eq. (19) for a slab waveguide: (a) with varying core thickness and (b) with
aining parameters are as marked. Bottom plots show the relative error between
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can be expressed analytically in terms of neff . Taking the deriva-
tives of the left-hand side of Eq. (10) with respect to ω and neff , we
have

dneff

dω
¼−

∂δr
∂ω

þ tc
c
hc þ ω

c
nctc
hc

∂nc

∂ω
∂δr
∂neff

−
ω

c
neff tc
hc

: ð21Þ

The derivatives of δr with respect to frequency are determined by
material dispersion:

∂δTEr
∂ω

¼ 2

ho
hc

nc
∂nc

∂ω
þ hc

ho
no

∂no

∂ω
n2
c−n2

o
; ð22Þ

∂δTMr
∂ω

¼ 2

ho
hc

nc
∂nc

∂ω
þ hc

ho
no

∂no

∂ω

� �
þ Δ

ðn2
c−n2

oÞ½1þ η� ; ð23Þ

while the derivatives of δr with respect to neff are non-zero even
for dispersionless media:

∂δTEr
∂neff

¼ −2
neff

ho
hc

þ hc
ho

� �
n2
c−n2

o
; ð24Þ

∂δTMr
∂neff

¼−2
neff

ho

hc
þ hc

ho

� �
ðn2

c−n2
oÞ½1þ η� ; ð25Þ

where the correction terms in Eqs. (23) and (25) are

Δ¼ 2hcho
1
no

∂no

∂ω
−

1
nc

∂nc

∂ω

� �
; ð26Þ

η¼ n2
eff−n

2
o

n2
o

þ n2
eff−n

2
c

n2
c

: ð27Þ

Making use of Δneff 5neff , we can determine the difference
between group velocities Δvg ¼ vTMg −vTEg by taking the Taylor
expansion of Eq. (20) with respect to Δneff , Δ, and η. The final
Fig. 4. Comparison between Δvg obtained by numerically solving Eqs. (10) and (20) vs. a
core thickness and (b) with varying Al concentration between core and cladding for λ¼ 1
as marked. Solid lines and circles, full calculation; dashed lines and squares, calculation
error (in μm=ps) between analytical and numerical calculations.
expression reads

Δvgðneff Þ≈−
c

neff þ ω
dneff

dω

� �2 1þ ω
∂
∂ω

dneff

dω

� �
Δneff

�

−
ω

∂δr
∂neff

−
ω

c
neff tc
hc

−
∂δr
∂ω

ηm þ 2Δ
n2
c−n2

o

� �

−ω

∂δr
∂ω

þ tc
c
hc þ

ω

c
nctc
hc

∂nc

∂ω
∂δr
∂neff

−
ω

c
neff tc
hc

� �2

∂δr
∂neff

η

3
7775: ð28Þ

Within these approximations, we only require neff ¼ nTE
eff as the

input parameter, to be found by solving a transcendental equation
or, for the case of fundamental modes, analytically from Eq. (16).
Fig. 4 compares Eq. (28) with numerically obtained Δvg in
AlxGa1−xAs slab waveguides, where the refractive index nðx;ωÞ
depends both on the frequency ω and on the Al concentration x
[37]. We see that Eq. (28) predicts the correct Δvg with absolute
error not exceeding 0:02 μm=ps, unless both the core/cladding
index contrast is extreme (xo−xc40:4) and the core thickness is in
the range 0:4otcnc=λo0:8. While the presence of material
dispersion modifies the group velocities quite significantly, it has
almost no effect on the accuracy of Eq. (28).
2.4. Bragg reflection waveguides

Now consider a slab waveguide with multilayer claddings where
the claddings are semi-infinite periodic structures made of alter-
nating high-index and low-index layers (one-dimensional Bragg
mirrors). These layers have refractive indices nh;nl and thicknesses
th; tl, respectively [Fig. 1(c)]. The reflection coefficient from such a
cladding R∞, which for this new structure should replace rco in Eq.
(10), can be analytically determined using Airy formulas similar to
Eqs. (8) and (9). With RðhÞ

cc , R
ðlÞ
cc given by Eq. (8) and T ðhÞ

cc , T
ðlÞ
cc given by

Eq. (9) with the subscripts i; j¼ c, and inserting an imaginary layer
with zero thickness between the high- and low-index layers, we can
use Eqs. (8) and (9) again to arrive at the reflection and transmission
nalytically from Eq. (28) for a slab waveguide made of AlxGa1−xAs: (a) with varying
550 nm and xc ¼ 0:25 (nc≈3:0 at room temperature); the remaining parameters are
with neglected material dispersion in AlxGa1−xAs. Bottom plots show the absolute
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coefficients for a bilayer [38]:

RðhlÞ
cc ¼ RðhÞ

cc þ ½T ðhÞ
cc �2RðlÞ

cc

1−RðhÞ
cc R

ðlÞ
cc

; RðlhÞ
cc ¼ RðlÞ

cc þ
½T ðlÞ

cc �2RðhÞ
cc

1−RðhÞ
cc R

ðlÞ
cc

; ð29Þ

T ðhlÞ
cc ¼ T ðlhÞ

cc ¼ T ðhÞ
cc T

ðlÞ
cc

1−RðhÞ
cc R

ðlÞ
cc

: ð30Þ

A semi-infinite periodic cladding remains unchanged if one of
its periods is stripped away [see Fig. 5(a)]. Hence, these coeffi-
cients are related to R∞ as [see Eq. (8)]

R∞ ¼ RðhlÞ
cc þ T ðhlÞ

cc R∞T
ðlhÞ
cc

1−R∞R
ðlhÞ
cc

: ð31Þ

This is a quadratic equation for R∞ with two solutions. Only one of
them, which corresponds to a decaying (rather than growing) field
inside the multilayer, should be chosen as the physically correct
value of R∞.

For QW BRWs,

whth ¼wltl ¼ π=2; ð32Þ
so R2

∞ ¼ 1, and the pole condition in the form of Eq. (10) can be
solved easily. The relevant analysis can be found in earlier work
Fig. 5. (a) Illustration to the derivation of the Bragg cladding reflection coefficient
R∞ in Eqs. (29)–(31), (b) intensity and phase of R∞ obtained from Eq. (31) for
different δ¼whth ¼wltl . The structure is a BRW with nh ¼ 3:25 and nl ¼ nc ¼ 3:0,
which satisfies the QW condition (δ¼ π=2) for 1550 nm and neff ¼ 2:85 at
th ¼ 248:1 nm, tl ¼ 413:7 nm, (c) the dependence jR∞ðneff Þj2 for the same QW Bragg
cladding, showing a photonic band gap around neff ¼ 2:85 (shaded regions), along
with mode diagrams for a BRW with varying core thickness tc. Analytical results for
infinite-period claddings (lines), obtained by solving Eq. (10) with rco replaced by
R∞ , are compared with the results of direct 1D numerical simulations [39] for
6-period claddings (shown as dots).
[15,23,24]. In a more general case, the expression for the cladding
reflection coefficient R∞, albeit rather bulky, can still be obtained
analytically. We plot the amplitude and phase of R∞ in Fig. 5(b)
as a function of δ≡whth ¼wltl. As expected, the cladding can
function in two regimes: the pass band where jR∞j2o1 and no
guided modes can be supported, and the stop band or band gap
around δ¼ π=2, where jR∞j2 ¼ 1 and the Bragg reflection in
infinite-period claddings effectively functions like total internal
reflection for the waves in the core, resulting in guided modes.
The phase argðR∞Þ varies monotonically around π throughout the
band gap.

Note that R∞ becomes polarization dependent everywhere out-
side the QW point [24], reflecting the different widths of the band
gap for TE- vs. TM-polarized modes. Hence, argðRTE

∞ Þ≠argðRTM
∞ Þ

whenever the frequency is off the middle point of the PBG,
as defined by the QW condition. According to Eq. (10), this
phase mismatch results in nTE

eff≠n
TM
eff . Indeed, Fig. 5(c) illustrates

this by showing the mode structure of a BRW with varying core
thickness tc.

In Fig. 5(c) we also compare the mode effective indices
predicted using the infinite-period cladding reflection coefficients,
R∞ [see Eq. (31)], in place of rco in Eq. (10) with numerical results.
The numerical results were obtained from a fully vectorial mode
solver (Lumerical MODE SOLUTIONS [39]) that treated the BRW as
having a finite number of periods N in the claddings. Even with N
as low as 6, good agreement can be seen everywhere except in the
immediate vicinity of the band edges where the reflectivity of
finite-period Bragg mirrors is expectedly poor. This poor reflectiv-
ity causes the edges of a photonic band gap to smear, causing
discrepancies between the analytical and numerical results, as
well as the existence of extremely lossy guided modes slightly
beyond the band edges of an infinite-period cladding.

2.5. Two-dimensional ridge waveguides

For realistic applications of waveguides where light is guided
along one direction and confined in the remaining dimensions, a
slab multilayer structure is usually etched to form a ridge or strip-
loaded waveguide [Fig. 1(a)]. Determining the effective index in
these waveguides normally requires solving the wave equations in
2D. Rigorous analytical solutions are only available for simple
geometries. Still, if the ridge is sufficiently wide compared to the
core thickness, the effective-index method can be employed [31]
to apply the 1D results described above to ridge waveguides while
keeping the relevant expressions simple and analytic.

Consider that a slab waveguide of arbitrary geometry is made
into a ridge of width Wbtc , suppose that the effective indices for
the slab waveguide are denoted nTE;TM

1D , and that the ridge is
surrounded by an ambient medium with refractive index na. The
effective medium method dictates that the ridge waveguide
modes should be found by analyzing the pole condition for the
direction perpendicular to the channel [x in Fig. 1(a)], assuming
the core to be made of material with n¼ nTE;TM

1D , i.e.,

1¼ ð~rTE;TMca Þ2 exp 2i
ω

c
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTE;TM

1D Þ2−ðnTE;TM
2D Þ2

q� �
; ð33Þ

where

~rTEca ¼
n2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTE

1DÞ2−ðnTE
2DÞ2

q
−iðnTE

1DÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTE

2DÞ2−n2
a

q
n2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTE

1DÞ2−ðnTE
2DÞ2

q
þ iðnTE

1DÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTE

2DÞ2−n2
a

q ; ð34Þ

and

~rTMca ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTM

1D Þ2−ðnTM
2D Þ2

q
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTM

2D Þ2−n2
a

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTM

1D Þ2−ðnTM
2D Þ2

q
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTM

2D Þ2−n2
a

q : ð35Þ
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We note that these are essentially Fresnel's formulas [cf. Eq. (5)]
between the material with refractive index equal to the 1D
effective index, and the ambient medium, and that TE and TM-
polarization expressions are reversed because a mode that is TE-
polarized with respect to the layer interfaces [x−z planes in Fig. 1
(a)] is TM-polarized with respect to the ridge sides [y−z planes in
Fig. 1(a)], and vice versa [31].

Since j~rTE;TMca j ¼ 1, Eq. (33) reduces to

arg ~rTE;TMca þ ω

c
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTE;TM

1D Þ2−ðnTE;TM
2D Þ2

q
¼ πm; ð36Þ

where the integer m¼ 1;2;… numbers the modes with different
order with respect to the number of maxima in the direction of the
ridge. Physically, m is the number of half-waves accommodated
within a ridge with a width W.

The condition Wbtc assures that the effective indices of the 2D
modes do not deviate very much from those of the 1D modes,
especially for lower m. Hence, as a first-order approximation, we
can assume that nTE;TM

2D ≈nTE;TM
1D everywhere except where these two

quantities are subtracted, i.e., we assume that in Eqs. (34) and (35)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTE;TM

2D Þ2−n2
a

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTE;TM

1D Þ2−n2
a

q
: ð37Þ

We can then Taylor expand the remaining function using n2
1D−n

2
2D

as the small parameter. As a result, Eq. (36) can be further
transformed and solved for the effective index nTE;TM

2D for the mode
of the order m as

ðnTE
2D;mÞ2 ¼ ðnTE

1DÞ2−
ðmπÞ2

ω

c
W þ 2n2

a=ðnTE
1DÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnTE
1DÞ2−n2

a

q
2
64

3
75
2 ð38Þ
Fig. 6. Dependence of neff on the ridge width W of a 2D ridge waveguide obtained by th
(33) (“exact”, solid lines) and calculated from the first-order approximation Eqs. (38) a
polarized modes; (c) shows both polarizations in overlay. For the TE case, the solid and d
eigenmode solver [39] are shown as dots. The structure parameters are nc ¼ 3:25, tc ¼ 5

Fig. 7. Dispersion curves for TIR-guided fundamental (downconverted) and Bragg-gui
analytical results for a slab waveguide with an infinite number of periods in the claddin
number of periods, given by the effective index method and (c) 2D numerical results f
eigenmode solver [39]. The parameters are xc ¼ 0:62, tc ¼ 392 nm; xh ¼ 0:2, th ¼ 111 nm
and

ðnTM
2D;mÞ2 ¼ ðnTM

1D Þ2−
ðmπÞ2

ω

c
W þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnTM
1D Þ2−n2

a

q
2
64

3
75
2 : ð39Þ

Fig. 6 shows the comparison of these first-approximation
equations with the exact result obtained numerically from the
pole condition (33), as well as with the results of direct 2D
numerical simulations. We note that the results of the exact and
the approximate effective-index method nearly coincide, and
show an excellent agreement with the eigenmode solver simula-
tions down to very narrow (1 μm) ridges, as long as nTE;TM

2D;m 4no so
that guiding in the y-direction still persists.

Note that in the strip-loaded configuration, the results are just
as applicable if the effective index n1D;out in the regions outside the
strip is calculated and used in place of na. Obviously, since
n1D;out≲n1D, the number of modes will be limited by the applicable
range of effective indices for n2D;m defined by n1D;outon2D;mon1D.
3. Multiple-type phase matching

As we have seen in the previous section, many properties of
waveguides with multilayer claddings can be intuitively under-
stood from simple analytical expressions involving the Airy
formulas for the Fresnel reflection coefficients of the claddings.
For example, we see that form birefringence for the index-guided
modes in a slab waveguide is primarily determined by the ridge
width (Fig. 6, see [40,41]) while form birefringence for the Bragg-
guided modes is strongly influenced by the QW condition in the
claddings (Fig. 5, see [24]).
e effective index method, based on numerical solution of the exact pole condition
nd (39) (“1st-order”, dotted lines) for the first four orders of (a) TE- and (b) TM-
otted lines are almost indistinguishable. The results obtained from a fully vectorial
00 nm, no ¼ 3:0 for λ¼ 1550 nm.

ded SH (pump) modes of a BRW showing type-I, type-II, and type-0 PM: (a) 1D
gs, (b) 2D analytical results for a ridge waveguide with W ¼ 4:4 μm and an infinite
or a ridge waveguide with 6 periods in the claddings, obtained by a fully vectorial
; xl ¼ 0:8, tl ¼ 341 nm. Here and further, the gray dotted line shows ðnTE

TIR þ nTM
TIRÞ=2.
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This knowledge is especially valuable in a device where index-
guided modes at a certain frequency ω and Bragg-guided modes at
second-harmonic frequency 2ω are phase matched for on-chip SHG
or SPDC [15]. Fig. 7 shows such PM in a typical QW-BRW. We see
that PM of multiple types is present, including standard type-I
(TM2ω↔TEω þ TEω) and type-II (TE2ω↔TEω þ TMω), as well as type-
0 [42,43] (TM2ω↔TMω þ TMω, also referred to as type-IV). Still,
these processes are several nanometers apart from each other due
to form birefringence in the index-guided modes [see Eq. (19)].
In what follows, we show how the design principles outlined above
can be used to realize more than one PM type at the same
wavelength. Such simultaneous multiple-type PM can be beneficial
for high-power continuous-wave SHG [44,45]. It is also useful in
SPDC because the entanglement characteristics of the generated
photon pairs depend on the PM type, and can be switched simply
by rotating the polarization of the pump beam [26].

3.1. Simultaneous phase matching of two types

For simultaneous type-I and type-II PM at a frequency ω0, we
require

nTM
eff ð2ω0Þ ¼ nTE

eff ðω0Þ;
nTE
eff ð2ω0Þ ¼ ðnTE

eff ðω0Þ þ nTM
eff ðω0ÞÞ=2; ð40Þ

and for simultaneous type-0 and type-II PM, we require

nTM
eff ð2ω0Þ ¼ nTM

eff ðω0Þ;
nTE
eff ð2ω0Þ ¼ ðnTE

eff ðω0Þ þ nTM
eff ðω0ÞÞ=2: ð41Þ

To bring two PM types to the same wavelength, form birefrin-
gence in the index-guided modes should be compensated by form
birefringence in the Bragg modes, so that Δnð2ω0Þ ¼ 7Δnðω0Þ=2.
This can already be done in a 1D slab geometry, by veering the
waveguide geometrical parameters off the QW condition. Indeed,
any perturbation of the QW condition (a change in δi ¼witi where
i stands for c, l, or h) will create a controllable shift between neff for
the TE vs. TM-polarized Bragg modes. Changing the thicknesses of
the core and/or cladding layers tc;l;h is a more preferable way to
alter δc;l;h than changing the refractive indices nc;l;h because the
latter exerts more influence over the index-guided modes. Fig. 8
(a) shows how nTE−nTM for Bragg-guided modes can be controlled
by varying the layer thicknesses.
Fig. 8. (a) The dependence of Δneff ¼ nTM
eff −n

TE
eff for the Bragg modes on the variation of

relations of (b) structure with simultaneous type-I and type-II PM; (c) structure with si
with semi-infinite claddings, obtained from Eq. (31). Middle: Analytical results for a 2D
The operating points for (b) and (c) are denoted in the plots (a) as circles and squares,
To keep the PM wavelength near 1550 nm and to further
enhance the difference between nTE and nTM, both tc and tl should
be varied with opposite signs. A structure with tc decreased by
33.2 nm and tl increased by 50 nm (compared to the QW structure
in Fig. 7) has Δn¼ −0:0045, which results in simultaneous PM for
type-I and type-II SPDC. A structure with tc increased by 18.5 nm
and tl decreased by 64 nm has Δn¼ þ 0:0045, resulting in
simultaneous PM for type-II and type-0 SPDC.

These examples are presented in Fig. 8, indeed showing
simultaneous type-I+type-II [Fig. 8(b)] and type-II+type-0 [Fig. 8
(c)] PM in SPDC. We have also verified our 1D results for a
moderate-width (4:4 μm) ridge waveguide using both analytical
calculations and numerical simulations. The property of simulta-
neous multiple-type PM is seen to persist in the 2D case with good
accuracy, despite the systematic shifts in the effective index and
PM wavelengths, and deviations between the analytical and
numerical results are minimal. For 8-period claddings, non-QW
BRWs have increased radiation losses in the Bragg modes by
several times compared to the reference QW-BRWs. Still, the
losses do not exceed 0.2 dB/cm, which is acceptable in waveguides
several millimeters long.

When pumped by TE-polarized light, the proposed waveguides
act as a source of cross-polarized photon pairs entangled both in
polarization and in time-energy, i.e., entangled in more than one
degree of freedom, or hyperentangled [46]. Such quantum states
have multiple uses in quantum information processing, such as an
improved reliability of quantum interference experiments [47] as
well as superdense coding and cryptography [48,49]. On the other
hand, when pumped by TM-polarized light, the proposed wave-
guides produce co-polarized photon pairs, which retain only time-
energy entanglement. So, by varying the polarization of the pump
light, one can control the degree of hyperentanglement in the
generated photon pairs [26], which was found to be helpful for Bell
state analysis [50].

3.2. Simultaneous phase matching of three types

We have seen that phase matching of two types can be used to
generate both cross-polarized and co-polarized photon pairs, and
switch between them easily. Still, the polarization of co-polarized
pairs is predetermined: for the type II+I PM, they come from the
type-I process and are always TE-polarized; for the type II+0 PM,
layer thicknesses tc;l;h with respect to the reference structure in Fig. 7. Dispersion
multaneous type-II and type-0 PM. Left: Analytical results for a 1D slab waveguide
ridge waveguide. Right: Numerical results from fully vectorial 2D simulation [39].
respectively.
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they come from the type-0 process and are always TM-polarized. It
would be desirable to eliminate this certainty so that co-polarized
photon pairs could be either TE+TE or TM+TM. This can be
achieved by aligning all three PM types together at the same
frequency ω0, i.e.,

nTE
eff ð2ω0Þ ¼ nTM

eff ð2ω0Þ ¼ nTE
eff ðω0Þ ¼ nTM

eff ðω0Þ: ð42Þ

Such alignment can be achieved by reducing Δneff to zero for both
TIR-guided and Bragg-guided modes. This is only possible in a 2D
geometry where Δn can be controlled by varying the ridge width
W, as seen from Eqs. (38) and (39). From these equations, we note
that the modes at ω are more strongly affected by changing the
ridge width than modes at 2ω. Hence the route to achieve
combined type I+II+0 PM in a BRW consists in lowering W to
achieve Δneff ðωÞ ¼ 0 [see Fig. 9(a)] and maintaining PM in the
desired wavelength range by simultaneously changing tc. The
claddings should be kept quarter-wave, which is achieved by
adjusting th;l to satisfy Eq. (32). Finally, the QW condition (32)
needs to be slightly distorted to counteract a departure from
Δneff ð2ωÞ ¼ 0, which is once again done through a minor correc-
tion to tc. The resulting structure, based on xc ¼ 0:62, xh ¼ 0:2, and
xl ¼ 0:8 as in Fig. 7, has tc ¼ 363:3 nm, th ¼ 107 nm, and
tl ¼ 262 nm and shows the same neff for W ¼ 1:38 μm [see Fig. 9
(b,c)]. The effective-index analytical results are seen to have a good
agreement with 2D numerical simulations.

Having all three PM types at the same wavelength enables the
proposed waveguide to generate entangled photon pairs with all
possible polarization combinations (TE+TE from type I, TE+TM from
type II, and TM+TM from type 0). Switching between cross-polarized
pairs (TE+TM) and co-polarized pairs (TE+TE or TM+TM, similar to a
conventional bulk two-crystal type-I SPDC source) can be achieved in
the continuous-wave regime by simply rotating the polarization of the
pump beam. In particular, this can enable on-chip generation of
multiple optical Bell states, as will be discussed in the following
section. In addition, combining all possible PM types at one wave-
length can increase the brightness of a continuous-wave frequency
upconversion device and make it polarization insensitive.
4. Entangled photon generation

One of the most promising features of SPDC in BRWs is to
provide an on-chip source of entangled photons that can be
integrated with other optical components such as a diode laser
pump and quantum interference circuitry. As demonstrated in the
previous section, the existence of waves with independent guiding
mechanisms within the same BRW can be used to tailor SPDC
parameters (such as wavelength, bandwidth, and PM type) via
appropriate BRW-based structure design. However, the implica-
tions of this versatility on the nonclassical properties of generated
photon pairs remain to be analyzed.
Fig. 9. (a) Dependence of mode effective indices on the ridge width W for a BRW with si
tl ¼ 262 nm) obtained analytically by the effective index method for λ¼ 1550 nm, along
structure with W ¼ 1:38 μm.
In what follows, we will combine the design principles outlined
above with the previously developed quantum Hamiltonian treat-
ment of SPDC in photonic waveguides [28,29] to determine the
entanglement properties of photon pairs produced in BRWs and to
design structures capable of generating interesting nonclassical
states of light.
4.1. Cross-polarized photon pairs with maximal polarization
entanglement

For many applications of photons in quantum information
processing, it is desirable to have entanglement in only one degree
of freedom, usually polarization. Generating such entangled
photons on a chip turns out to be difficult because of form
birefringence (see, e.g., Helmy et al. [51]). The birefringence causes
group velocity mismatch (GVM) between differently polarized
downconverted photons, so some information about a photon's
polarization can be inferred from its spectral properties [52]. This
limits the usefulness of polarization entanglement in quantum
optical experiments [52–54].

To overcome this drawback, spectral filtering or off-chip post-
compensation schemes are typically used [55]. Although such
compensation can be implemented on-chip by a clever choice of
polarization-transforming integrated optics (as recently demon-
strated in a silicon-based SFWM source [6]), it would be highly
desirable to find a universal method of eliminating form birefrin-
gence directly as the photon pairs are generated. Our primary
objective is to use the presented analytical formalism to achieve
Δvg ¼ vTMg −vTEg ¼ 0 for the downconverted modes in a BRW.

We begin by considering a slab waveguide (nh ¼ nl ¼ no, i.e., no
modulation in the cladding) and use Eq. (28) in the form of a
generalized dependence Δvg ¼ Fðω;neff Þ. The effective index neff

can be determined either numerically or from Eq. (16); Fig. 10
(a) shows that both methods demonstrate decent qualitative
agreement, so Eq. (16) can be used as a fast prediction tool for
determining how Δvg depends on the waveguide parameters.
Thus, it can be seen that single-mode waveguides with small tc
do not satisfy Δvg ¼ 0 since Fðω;neff Þ40. However, increasing the
core thickness both increases nTE

eff and makes Fðω;neff Þ cross zero.
Hence a slab waveguide for TIR-guided modes with vTMg ¼ vTEg at a
given ω can be designed simply by choosing the appropriate tc.

In a BRW with modulated cladding, the expressions for rco in
Eq. (10) will be replaced by R∞ from Eq. (31), and the expressions
for δr in Eqs. (17) and (18) will be replaced by arg R∞. So Δvg is
expected to depend on the modulation depth nh−nl. Still, it can be
evaluated either semianalytically or numerically by using transfer
matrix methods. Indeed, as seen in Fig. 10(b), the effect of the
cladding modulation does not alter the dependence ΔvgðtcÞ qua-
litatively, and the quantitative modification is rather straightfor-
ward, so the appropriate tc for zero GVM in the TIR-guided modes
can still be selected.
multaneous three-type PM (xc ¼ 0:62, tc ¼ 363:3 nm; xh ¼ 0:2, th ¼ 107 nm; xl ¼ 0:8,
with the dispersion relations obtained (b) analytically and (c) numerically for the



Fig. 10. (a) Comparison of the GVM Δvg ¼ Fðω;neff Þ obtained from Eq. (28) with neff determined numerically vs. given by Eq. (16) for varying core thickness tc. The structure is
a slab AlxGa1−xAs waveguide with xc ¼ 0:4 and xo ¼ 0:65 (nc ¼ 3:17, no ¼ 3:05 at 1550 nm) and (b) the dependence ΔvgðtcÞ for different index modulation depth (nh−nl) in the
Bragg cladding.

Fig. 11. Mode dispersion diagrams showing type-II PM in AlxGa1−xAs BRWs (xc ¼ 0:4, xh ¼ 0:6, xl ¼ 0:7) with Δvg ¼ 0: (a) 1D slab with tc ¼ 755 nm, th ¼ 209 nm, tl ¼ 279 nm;
(b) 2D ridge with tc ¼ 1014 nm, th ¼ 232 nm, tl ¼ 341 nm, and W ¼ 4:4 μm, obtained analytically (left) and by a vectorial commercial mode solver [39] (right).
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The next step is to phase match these modes with a Bragg-guided
pump mode with the frequency ωp ¼ 2ω. For type-II PM, where a
photon from the TE-polarized Bragg-guided modewill produce a pair
of cross-polarized photons going into TE- and TM-polarized TIR-
guided modes, we aim at nTE

eff ðωÞ þ nTM
eff ðωÞ ¼ 2nTE

eff ðωpÞ. To maximize
the reflectivity of the Bragg claddings, the cladding layer thicknesses
should satisfy the QW condition (32) in the form [15]

th
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
h−n

2
eff ðωpÞ

q
¼ tl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
l −n

2
eff ðωpÞ

q
¼ ðλp=2Þ=4≡Λ; ð43Þ

and the pump mode should operate at the midgap point, i.e.,

hctc ¼ tc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
c−n2

eff ðωpÞ
q

¼mΛ; m¼ 1;2;3;…: ð44Þ

Since Δvg ¼ 0 is fulfilled at relatively large values of
tc≃700–900 nm, the fundamental Bragg mode for which m¼1
cannot be phase matched at the desired neff [see, e.g., Fig. 5(c)].
Instead, we use the higher-order Bragg mode with m¼3, which
can be phase matched and whose spatial overlap with the
fundamental downconverted modes is much better than for
modes with even m.

The resulting example 1D design, based on xc ¼ 0:4, xh ¼ 0:6,
xl ¼ 0:7 to keep the modulation depth in the cladding small, has
tc ¼ 755 nm, th ¼ 209 nm, tl ¼ 279 nm. Fig. 11(a) shows a good
agreement between analytically and numerically obtained disper-
sion relations. The numerical GVM for the downconverted modes
equals −5� 10−4 μm=ps.

For the 2D ridge design, decreasing the ridge width W
decreases Δneff (see Fig. 6) but increases Δvg . Hence an additional
increase in tc is needed to compensate for it; th and tl also have to
be slightly increased to maintain PM at the desired wavelength
due to the dependence of neff on W. The resulting 2D design for
W ¼ 4:4 μm has tc ¼ 1014 nm, th ¼ 232 nm, tl ¼ 341 nm. The cor-
responding dispersion diagrams are shown in Fig. 11(b), again
demonstrating a good agreement between analytical and numer-
ical results and showing GVM of −3� 10−4 μm=ps.

We can now employ the previously developed Hamiltonian treat-
ment of χð2Þ�nonlinear processes in waveguide structures [28,29] to
express the quantum state of a photon pair generated by SPDC as
jψgen〉≈ð1þ νC†

IIÞjvac〉 where C†
II is the biphoton creation operator

C†
II ¼

1ffiffiffi
2

p ∑
α;β

Z ∞

0
dω1dω2ϕαβðω1;ω2Þa†αω1

a†βω2
; ð45Þ

and asω are boson mode operators for the downconverted photons
with frequency ω and polarization s (TE or TM, or, respectively, H and



S.V. Zhukovsky et al. / Optics Communications 301–302 (2013) 127–140 137
V), obeying the commutation relations ½asω; a†s′ω′� ¼ δss′δðω−ω′Þ. For
details on calculating the rate of entangled photon generation in these
structures, the reader is referred to our earlier works [14,54]. The
function ϕαβðω1;ω2Þ, called the biphoton wave function (BWF), char-
acterizes the spectral properties of the generated photon pairs. It is
symmetric with respect to the exchange of photons,

ϕαβðω1;ω2Þ ¼ ϕβαðω2;ω1Þ; ð46Þ

is normalized according to

∑
α;β

Z ∞

0
dω1 dω2jϕαβðω1;ω2Þj2 ¼ 1; ð47Þ

and has the form [14,28,29]

ϕαβðω1;ω2Þ∝ϕpðω1 þ ω2ÞsincðΔkγαβPML=2Þ; ð48Þ

where ϕpðωÞ is the spectrum of the pump pulse, and

ΔkγαβPM ¼ kγðω1 þ ω2Þ−kαðω1Þ−kβðω2Þ ð49Þ

is defined by the PM conditions. The wave vectors ksðωÞ are
determined from the waveguide dispersion relations (e.g., Fig. 11).
Around the PM frequency ω0 they are taken as

ks ¼ ks0 þ ðω−ω0Þ=vsg þ ðω−ω0Þ2βs2=2; ð50Þ

where vsg is the group velocity and where βs2 is the group velocity
dispersion (GVD) parameter [56].

Assuming negligible GVD parameters, from Eqs. (48) and (50) it
can be shown that zero GVM in the downconverted modes
(vTMg ¼ vTEg ) results in additional symmetries in the BWF:

ϕαβðω1;ω2Þ ¼ ϕαβðω2;ω1Þ

or ϕαβðω1;ω2Þ ¼ ϕβαðω1;ω2Þ: ð51Þ

The degree to which these symmetries are truly satisfied, regard-
less of the size of the GVD parameters or GVM, can be quantified
by the parameters [53]

Gαβ ¼ 2
Z

dω1dω2ϕαβðω1;ω2Þϕn

βαðω1;ω2Þ: ð52Þ

We note that it is non-trivial to define a fidelity between our
multi-frequency (multimode) states C†

IIjvac〉 [recall Eq. (45)] and
the “ideal single-mode” (single-frequency) polarization-encoded
Bell states of the literature jΨ 7 〉¼ ½jHV 〉7 jVH〉�=

ffiffiffi
2

p
and

jΦ7 〉¼ ½jHH〉7 jVV〉�=
ffiffiffi
2

p
, as our states contain frequency correla-

tions whereas the “ideal” states ignore the frequency degree of
freedom.
Fig. 12. (a) The schematic of a HOM-type experiment to verify the degree of polarizatio
the proposed structure with mode dispersion shown in Fig. 11(b) compared to the refe
depends on the walk-off effects arising from polarization sensitive elements of the exper
compensated.
Nevertheless, when GHV ¼ Gn

HV ¼ 1 then Eq. (51) holds and the
state corresponding to cross-polarized photon pairs

C†
HV ;VHjvac〉¼

1ffiffiffi
2

p
Z

dω1dω2½ϕHV ðω1;ω2Þa†Hω1
a†Vω2

þϕVHðω1;ω2Þa†Vω1
a†Hω2

�jvac〉; ð53Þ

can be written as

jψ sym〉¼
Z

dω1dω2ϕHV ðω1;ω2Þ
a†Hω1

a†Vω2
þ a†Vω1

a†Hω2ffiffiffi
2

p jvac〉: ð54Þ

The states jψ sym〉 and jΨþ〉 behave identically in a class of experi-
ments that includes fourth-order interference experiments
[52,53], as well as the polarization-correlation and Bell state
analyzer experiments of [57]. Furthermore, note that the fidelity
between the states C†

HV ;VHjvac〉 and jψ sym〉 [Eqs. (53) and (54)] is
simply F ¼ j1þ GHV j=2. Hence, we refer to photon pairs for which
GHV ¼ Gn

HV ¼ 1 as maximally polarization entangled [54].
One such experiment is the Hong-Ou-Mandel-type experiment

shown in Fig. 12(a) [52]. There the polarizing beam splitter
oriented diagonally between TE and TM polarizations acts as a
50:50 beam splitter for both photons, so if they are entangled, the
detectors should register no coincidence counts. Varying the time
delay τ between the two polarizations, created by placing a
birefringent phase retarder before the beam splitter, one should
see a dip in the dependence of the coincidence rate DcðτÞ. For a
more general type-II state for which Eq. (51) does not hold, DcðτÞ
assumes the form [52]

DcðτÞ ¼
Z

dω1dω2½jϕHV ðω1;ω2Þj2

−ϕHV ðω1;ω2Þϕn

VHðω1;ω2Þeiðω1−ω2Þτ�: ð55Þ
It is found numerically that the design in Fig. 11(b) has
GHV ¼ 1−1:6� 10−6 as opposed to GHV ¼ 0:537 for the reference
structure in Fig. 7 [54], and clearly seen in Fig. 12(b) that the
proposed structure offers a much greater visibility of the HOM dip,
V ¼ GHV=ð2−GHV Þ, than the reference structure (1−3� 10−6 versus
0.37). Thus it is confirmed that the proposed analytical methods
can optimize the performance of BRW-based polarization
entangled photon sources. Note that dispersive elements of the
experimental set-up (including the waveguide itself) can introduce
frequency-dependent walk-off between TE- and TM-polarized
downconverted photons as they travel from where they are
generated (taken to be the center of the waveguide in the
scattering theory formalism of Yang et al. [29]). For sufficiently
broadband SPDC, this can cause τ in Eq. (55) to become frequency-
dependent [τ-τðω1;ω2Þ] and alter the shape of the HOM dip,
possibly decreasing its visibility [58]. We are neglecting this effect
n entanglement [52,53]; (b) the calculated coincidence rate DcðτÞ as per Eq. (55) for
rence structure from Fig. 7(c). Note that the zero in the time scale is relative and
imental set-up (including the waveguide itself if Δvg≠0); this walk-off can be easily
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here because it is fully classical, and in principle could be
compensated by using an opposite-signed dispersive element [59].

4.2. Co-polarized and cross-polarized entangled photon pairs with a
single source: towards on-chip generation of Bell states

Finally, we combine the reasoning of Sections 3.2 and 4.1 to
design structures with even more possibilities for on-chip quan-
tum optics. One such possibility is the generation of entangled
photons with all possible polarization combinations (TE+TM, TE
+TE, and TM+TM) at the same pump wavelength, while keeping
the degree of polarization entanglement at the maximum. Such a
photon pair source would be able to generate high-quality co-
polarized and cross-polarized entangled photon pairs, and would
potentially facilitate on-chip production of optical Bell states
[18,19].

For this to be achieved, we would need a structure with both
group and phase velocities of the downconverted modes rendered
equal, e.g., vTMg ¼ vTEg and nTE

eff ¼ nTM
eff . Additionally, the Bragg clad-

dings should remain QW so that simultaneous PM of all three
types is present.

The strategy to design the desired structure is to simulta-
neously control Δneff (by varying the ridge width W) and Δvg (by
varying the core thickness tc and taking into account the effect of
W) in an iterative manner. The cladding parameters are chosen so
as to satisfy the QW condition (32) for the target value of neff , and
the points in the ðtc;WÞ space where Δvg ¼ 0 and Δneff ¼ 0 are
brought together by a slight (on the order of 0.005) adjustment to
that target value.

The design target for the Al concentrations in the layers
xc ¼ 0:4, xh ¼ 0:2, xl ¼ 0:8 and thicknesses tc ¼ 1900 nm,
th ¼ 107 nm, tl ¼ 264 nm is at W ¼ 1:52 μm [Fig. 13(a)]. Both
analytical and numerical results demonstrate simultaneous PM
of all three types. Minute discrepancies between Fig. 13(b,c) are
associated with the finite number of periods (N¼10) in the
numerical simulations, whereas the analytical model assumes that
the number of periods is infinite.

The numerically determined GVM in this design isΔvg≃0:1 μm=ps,
which is worse than in the previous section but can be further reduced
by iterative parameter tuning. Still, for the TE-polarized pump (type-II
PM, cross-polarized photon pairs) Eq. (52) gives GHV ¼ 0:923. This
value is much closer to unity than the reference design in Fig. 7. It also
surpasses the 3-type PM structure in Fig. 9, which is more similar in
geometrical composition and has GHV ¼ 0:2. Additionally, we have
calculated the shape of the dip for the HOM-type experiment of
Fig. 12(a). Even though Dcðτ¼ 0Þ≃0:0340, the dip has visibility of
0.857, which is much more pronounced than for the other structures
[Fig. 14(a)].

The need to use a 3rd-order Bragg mode as a pump, which was
required to achieve zero GVM, decreases the pair production
efficiency, which amounts to ηII ¼ 5:4� 10−9 pairs per pump
photon for the type-II process and one order of magnitude weaker
Fig. 13. (a) Dependence of mode effective indices on the ridge width W for a BRW wit
tc ¼ 1900 nm; xh ¼ 0:2, th ¼ 107 nm; xl ¼ 0:8, tl ¼ 264 nm) obtained analytically by the ef
(b) analytically and (c) numerically for the structure with W ¼ 1:52 μm.
for the type-I and type-0 processes (ηI ¼ 5:3� 10−10 and η0 ¼ 4:6�
10−10 pairs per pump photon). We see that the proposed structure
has η0≃ηI, unlike most BRWs where η05ηI because the type-0
process relies on the weak z-components of the modes. Along the
same lines as discussed in earlier [13], comparable efficiencies of
type-I and type-0 processes make it possible to use the structure
to produce co-polarized entangled photon pairs using a TM-
polarized pump, where the generated photon pair (having either
TE+TE or TM+TM polarization) is such that its polarization state is
unknown, but measuring the polarization of one photon unam-
biguously identifies the polarization of the other.

To demonstrate the improved performance for the co-polarized
pairs, we imagine subjecting them to the same experiment as the
cross-polarized photons [Fig. 12(a)]. In this case, the expression for
the coincidence rate is different and depends on τ much more
strongly:

DcðτÞ ¼
1
2

Z
dω1dω2ð ϕHHðω1;ω2Þj2 þ ϕVV ðω1;ω2Þj2

����

−½ϕHHðω1;ω2Þϕn

VV ðω1;ω2Þeiðω1þω2Þτ þ c:c:�Þ: ð56Þ

Note that, unlike for cross-polarized photons, this rate does not
necessarily drop to zero if the two processes associated with
ϕHHðω1;ω2Þ and ϕVV ðω1;ω2Þ have identical spectra [cf. Eq. (52)].
Here it is also required that the two processes have identical
efficiencies, i.e.,

R
dω1 dω2jϕHHðω1;ω2Þj2 ¼

R
dω1 dω2jϕVV ðω1;ω2Þj2

[or analogously, GHH ¼ GVV from Eq. (52)], a condition satisfied
automatically for our cross-polarized photon pairs.

In contrast to the cross-polarized case where the phase retarder
delays one photon in a pair, thus destroying the quantum inter-
ference so that Dc-0:5 for large τ, in the co-polarized case
delaying TE-polarized photon pairs with respect to the TM ones
just introduces a phase shift between the corresponding HH and
VV portions in the BWF, changing the quantum interference
pattern and resulting in fringes. The visibility of these fringes
can still characterize the degree of polarization entanglement
between the photons. In the ideal case of η0 ¼ ηI and
ϕHHðω1;ω2Þ ¼ ϕVV ðω1;ω2Þ, DcðτÞ reaches its minimum of zero at
τ¼ 0 and maximum of unity for a certain τ; this corresponds to the
maximal polarization entanglement. Otherwise, the visibility of
fringes is reduced, and in the other limiting case (either η05ηI or
no spectral overlap between ϕHH and ϕVV ) the fringes completely
vanish, giving Dc ¼ 1=2.

The results, shown in Fig. 14(b), confirm that the optimized
design shows a much greater visibility of interference fringes than
the earlier design (0.91 vs. under 0.002). Hence the proposed
structure has a potential of being used as a source of multiple
optical Bell states with very simple switching involving just a
change of the incoming pump polarization. This potential, along
with further nonclassical properties of generated photon pairs,
will be analyzed in more detail in a future study.
h simultaneous three-type PM and zero GVM in the fundamental modes (xc ¼ 0:4,
fective index method for λ¼ 1550 nm, along with the dispersion relations obtained



Fig. 14. The calculated coincidence rate DcðτÞ for the proposed zero-GVM structure (Fig. 13) compared to the non-optimized structure featuring simultaneous 3-type PM
(Fig. 9): (a) HOM-like dip for cross-polarized photons, as per Eq. (55); (b) quantum beats for co-polarized photons, as per Eq. (56). The inset shows an enlarged view of the
non-optimized curve, revealing that there are quantum beats but with a very small visibility (o0:002).
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5. Conclusions

To summarize, we have developed an analytical description of
multilayer slab and ridge waveguides using a combination of
Fresnel and recurrent Airy formulas with the use of the effective
index method. We have shown that it is often possible to construct
approximate but simple and straightforward analytical expres-
sions describing the effective indices and group velocities of
guided modes in arbitrary 1D Bragg reflection waveguides (BRWs),
and have defined the range of applicability for these expressions in
terms of the waveguide parameters. The derived expressions
simplify the calculations involving multilayer waveguides as
compared with the more traditional transfer matrix methods or
direct stitching of Maxwell's equation solutions at layer interfaces
[23,24], especially when inverse problems are involved. The
presented examples demonstrate a good agreement between
analytical and numerical results.

Specifically, the approach has been employed in the design of
BRWs with predetermined properties. First, we have designed
BRWs where two or three distinct PM types are present simulta-
neously at the same wavelength. This can enrich the degree of
polarization-driven control over nonlinear frequency conversion
processes and produce photon pairs entangled in a controllable
number of degrees of freedom [26]. Second, we have designed
BRWs for SPDC processes where the downconverted modes have
similar phase and/or group velocity. This can optimize the entan-
glement characteristics of generated photons, maximizing the
degree of polarization entanglement in them [54]. Such structures
can promote the use of BRWs as on-chip sources of entangled
photons and Bell states, furthering the goal of bringing quantum
optical experiments from an optical table to an optical chip. The
latter becomes especially relevant because the proposed designs
are based on an already mature AlGaAs fabrication platformwhere
integration of an SPDC photon pair source with a diode laser pump
has already been a success [60], making the results obtained in the
present study directly suitable for an experimental realization. As
a first step, a very recent paper [12] shows an experimental
demonstration of type-I SPDC in a BRW. Complementary to the
recent success in implementing an SFWM-based entangled photon
source on a silicon chip [6], SPDC-based entangled photon sources
in AlGaAs would enrich the variety of available components for
on-chip quantum optical experiments and quantum information
systems.

We note that while a BRW is an elegant example of a
waveguide with complex multilayer structure, it is certainly not
the only example. Closely related to BRWs are multilayer struc-
tures supporting Bloch surface waves, which are used in metal-
free surface enhanced Raman scattering [61] and as a mechanism
to form guided exciton polaritons [62]. Recently proposed hybrid
photonic/plasmonic waveguides, which combine low absorption
losses with nanoscale light confinement, are essentially multilayer
waveguides comprised of high-index, low-index, and metal layers
[63]. Finally, deeply subwavelength metal-dielectric multilayers,
commonly regarded as hyperbolic metamaterials [64], can be
shown to support a multitude of both guided and bulk propagat-
ing waves arising from coupled surface plasmon excitations [65],
and can also be described within the approach presented here.
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